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Outline 

!  Introduction and Motivation 
 
!  Vlasov Equilibria in a Nonlinear Constant Focusing Channel 

 - construction of Hamiltonian and stationary beam distributions 
 - nonlinear PDE for the 2D equilibrium space charge potential 

 
!  Numerical Tests Using the IOTA Nonlinear Potential 

 - preservation of 0, 60 mA, and 120 mA beams 
 - tracking results in the total constant-focusing potential 

 
!  Self-Consistent Matching to a Nonlinear Periodic Channel 

 - thoughts on an approximate matching procedure (ongoing) 
 
!  Conclusions 
 



 
 

Questions regarding space charge and nonlinear 
integrable optics in IOTA (using 2.5 MeV protons) 

4 * J. Qiang, Phys. Rev. ST Accel. Beams 20, 014203 (2017). 

1)  Will the presence of space charge destroy the integrability of single-particle motion in IOTA? 

2)  What are the primary (resonance) mechanisms by which this occurs? 

3)  How does space charge affect the structure of the beam distribution at high current? 

4)  What consequences will space charge have for beam stability, halo, and losses?   

5)  How can we address 1)-4) accurately in the presence of numerical artifacts (particle noise)? 

•  Use fully symplectic tracking methods (including self-consistent space charge*). 
 
•  Use modeling with high spatial resolution and a large number of particles (≥ 1M). 
 
•  Study reduced dynamical models to aid in understanding the novel dynamics. 
 
•  Use multiple methods to distinguish between integrability and chaos (preservation of 

invariants, sensitive dependence on initial conditions, frequency map analysis). 



 
 

Motivation for studying an IOTA constant focusing channel 
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•  Existence of Vlasov equilibria (matched periodic solutions) in a general s-dependent lattice is 
a deep and difficult problem, closely connected to the existence of invariants of motion. 

 
•  Constant focusing channels are well-studied standard tools for studying intense beam 

equilibria in the presence of linear external focusing. 

•  It is known that, in some cases1 (such as a periodic solenoid channel) constant-focusing 
equilibria can also be used to construct approximate equilibria of the periodic lattice.  

 
•  We would like to use nonlinear constant-focusing equilibria to investigate how space charge is 

expected to affect the beam distribution in IOTA as the beam intensity is varied. 
 

density  
contours 
Λ = 10 
τ = -0.45 
κx = κy = 1 
H0 = 0.3 

Example: 
 
Density contours of an intense beam in 
self-consistent 4D thermal equilibrium in 
a strongly nonlinear IOTA channel 

1J. Struckmeier and I. Hofmann, Particle Accelerators 39, 219 (1992). 
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•  Vlasov Equilibria in a Nonlinear Constant Focusing Channel 



 
 

Construction of an IOTA Constant Focusing Channel (1) 
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We begin with the s-dependent Hamiltonian of the IOTA ring (for on-energy orbits in the paraxial 
approximation):  
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This assumes a coasting beam, and all momenta are normalized by the design momentum 
p0=γ0β0mc0.  The beam is assumed to be longitudinally uniform, so that space charge is 2D 
and in the laboratory frame: 

r2� = �⇢/✏0 with                  on the boundary of the domain (pipe). � = 0

Note that kx, ky, τ, β, and ϕ all contain s-dependence. 
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The relativistic factors contain a subscript 0 to distinguish them from the twiss β and nonlinear 
insert parameter c.  



 
 

Construction of an IOTA Constant Focusing Channel (2) 
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We can construct an approximately “equivalent” s-independent Hamiltonian using methods to be 
described in the final section of the talk (on matching to periodic lattices). 

For simplicity, we will assume here that the s-dependence of all quantities in H is ignored.  Then 
we perform a Courant-Snyder transformation and scale by c to give the dimensionless variables:    
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Construction of a Stationary Beam Distribution 
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We define a stationary distribution function f in normalized coordinates by setting                               
for some specified function G, so that:  

f = G �HN

Then projecting onto the spatial coordinates gives the spatial density in the form:  
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Nonlinear PDE for the Equilibrium Potential 
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Expressed in our normalized coordinates, the Poisson equation becomes: 
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Using our expression for the spatial density gives the PDE that must be satisfied by the self-
consistent potential: 
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If one is able to solve for ΦN , then the Hamiltonian HN and the distribution function f are 
determined for a given G.    

(★) 



 
 

Nonlinear PDE for the Equilibrium Potential 
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Expressed in our normalized coordinates, the Poisson equation becomes: 
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If one is able to solve for ΦN , then the Hamiltonian HN and the distribution function f are 
determined for a given G.    

Numerical solution is obtained using a spectral Galerkin algorithm implemented in parallel 
Fortran.  For simplicity, we assumed a rectangular domain Ω. 
  
•  The code produces:  1) 2D Fourier coefficients of the space charge potential, 2) the potential 

and beam density on a 2D grid in coordinates x-y, 3) the difference between left and right-
hand sides of (★) on the same grid, and 4) a sampled 4D equilibrium particle distribution. 

 

(★) 
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•  Numerical Tests Using the IOTA Nonlinear Potential 



 
 

Numerical Example:  Tracking of an Equilibrium Beam in 
an IOTA Constant Focusing Channel 
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Beam energy:  2.5 MeV protons 
Thermal beam with <H> = 0.125  (norm. emittances εx,n = 0.4 µm, εy,n = 0.8 µm) 
Constant focusing nonlinear insert:  τ = -0.4, c = 0.01 m1/2, L = 1.8 m 
Twiss beta:  1.27 m    (Based on the IOTA ring circumference and tune.) 

Physical parameters: 

Numerical parameters: 1M particles, with 1K numerical steps per 1.8 m 
symplectic spectral space charge solver, 128x128 modes 
rectangular domain w/ a = b = 3.39 cm 

12l.4 mA current (Λ=10) 60.7 mA current (Λ=5) Zero current (Λ=0) 

G(h) / exp(�h/H0)

Density 
contours 



 
 

Tracking an Equilibrium Beam in an IOTA Constant 
Focusing Channel:  Preservation of the Beam Distribution 
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Zero current 60 mA current 

120 mA current 

Vertical profile:  initial 
Vertical profile:  final 
Horizontal profile:  initial 
Horizontal profile:  final 

Properties of beam equilibria with increasing current:   
•  increase in vertical beam size 
•  depression of the density in the beam core 
 
After 22 betatron periods of the bare lattice (180 m) 
•  change horizontal, vertical beam size: < 1.5, 0.7% 
•  change horizontal, vertical emittance:  < 0.5, 0.15% 
 

depression 

beam profiles 
are well-preserved 



 
 

60 mA Equilibrium Beam Propagating at 3 Values of Beam 
Current:  Evolution of RMS Beam Sizes (First 10 m) 
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Horizontal beam size Vertical beam size 

well-preserved 
well-preserved 

•  Results are shown for a 60 mA equilibrium beam propagating at 0, 60, 120 mA current. 
•  Visible sensitivity to current illustrates the strength of space charge at these settings. 



 
 

Tracking an Equilibrium Beam in an IOTA Constant 
Focusing Channel:  Observing Transition to Equilibrium 
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dip disappears 
dip appears 

60 mA equilibrium beam 
propagating at zero current 

0 current equilibrium beam 
propagating at 60 mA current 

v v Vertical profile:  initial 
Vertical profile:  final 
Horizontal profile:  initial 
Horizontal profile:  final 

By generating an equilibrium beam at one value of current, and tracking at a different value of  
current, we can observe transition between the corresponding beam equilibria (here after 180 m). 



 
 

Tracking an Equilibrium Beam in an IOTA Constant 
Focusing Channel:  Observing Transition to Equilibrium 
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Beam size evolution Emittance evolution 

•  Results are shown for a 0 current equilibrium beam propagating at 60 mA current. 
•  The rate of approach to equilibrium is likely enhanced due to rapid filamentation caused 

by strong nonlinear phase mixing. 



 
 

Properties of the Total Constant Focusing Potential  
(Space Charge Computed Using 15x15 Spectral Modes) 
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120 mA 

Vertical 
lineout 

> 100% vertical tune depression near the origin 

60 mA 

Horizontal 
lineout 

-0.5 0.5 yN
0.01
0.02
0.03
0.04
0.05
0.06
V

xN = 0

-0.5 0.5 xN
0.1
0.2
0.3
0.4
0.5
0.6
0.7
V

yN = 0

60 mA 
120 mA local 

minimum 



 
 

Frequency Map Analysis of Orbits in the Total Constant Focusing 
Potential  (These beams are extreme cases, for illustration.) 
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•  8K distinct initial conditions (x,0,y,0) in a disk, at the entrance to the nonlinear insert.   
•  Orbits are tracked in the sum of the external potential and the equilibrium space charge potential 

(using 15x15 modes) for 2048 passes through the 1.8 m nonlinear constant focusing section.   

Singular points of 
the NL potential at: 

(±1.13 cm, 0)

y 
(m

) 

tune diffusion 
beam 

boundary 

tune diffusion 

y 
(m

) 

Self-consistent 
thermal beam 

chaotic 
region 

60 mA Beam (Λ=5) 120 mA Beam (Λ=10) 

Motion is  
bounded due to  
H conservation. 
 
Integrable region 
shrinks with  
increasing current. 

integrable 
region 
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•  Matching in a Nonlinear Periodic Channel 



 
 

Comments on Periodic Equilibria in s-Dependent Lattices 
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For a lattice of period L, we would like a self-consistent distribution function f satisfying: 
 
 
 
Even without space charge, such periodic equilibria need not exist unless the one-turn map 
possesses an invariant of motion.  Can we approximately satisfy (★)? 
 
•  In the limit of zero current using the IOTA integrable or quasi-integrable (octupole) optics 

design, exactly matched solutions exist (provided the dynamics external to the nonlinear insert 
is treated as linear).1 

•  In the limit of a purely linear lattice with a KV beam, an exactly matched solution exists. 
 
•  In the limit of a purely linear axisymmetric lattice with a non-KV beam, near-equilibria can be 

constructed by combining the rms envelope equations with the use of constant-focusing 
equilibria.2 

 
We would like an approximate matching procedure that allows both nonlinear optics and space 
charge, and reduces to these special cases. 

1S. Webb, WEPPR012, IPAC2012 (2012). 
2J. Struckmeier and I. Hofmann, Particle Accelerators 39, 219 (1992).  Also R. D. Ryne, Los Alamos technical note. 
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Proposed Procedure for 
Matching to a Periodic Nonlinear Integrable Lattice 

22 

Input:  lattice, current, rms emittances 
Periodic lattice1 

s = 0 s = L 

drift 
βx=βy 

matched Twiss functions from 
rms envelope equations w/SC 

H(s) = Hext(s) + �KV (s)

one period 

1A. Romanov et al, THPOA23, NAPAC2016   

Δψx = Δψy = nπ 



 
 

Proposed Procedure for 
Matching to a Periodic Nonlinear Integrable Lattice 
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Input:  lattice, current, rms emittances 
Periodic lattice1 

s = 0 s = L 

drift NLI 

H(s) = Hext(s) + �(s)

nonlinear insert follows the 
Twiss functions of the bare 
lattice after rematching for SC 

one period 

1A. Romanov et al, THPOA23, NAPAC2016   



 
 

Proposed Procedure for 
Matching to a Periodic Nonlinear Integrable Lattice 
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Input:  lattice, current, rms emittances 

Courant-Snyder 
transformation 

+ 
average w/r/t 
betatron phase 

Periodic lattice 

s = 0 s = L 

drift NLI 

H(s) = Hext(s) + �(s)
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Proposed Procedure for 
Matching to a Periodic Nonlinear Integrable Lattice 
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Input:  lattice, current, rms emittances 

Courant-Snyder 
transformation 

+ 
average w/r/t 
betatron phase 

Periodic lattice 

s = 0 s = L 

drift NLI 

H(s) = Hext(s) + �(s)

“Equivalent” constant  
focusing lattice 

self-consistent equilibrium 

ψ = 0 ψ = 2πν 
hHN i = hHext

N i+ h�N i

solve the nonlinear PDE for 
the space charge potential of 
a Vlasov equilibrium beam 



 
 

Proposed Procedure for 
Matching to a Periodic Nonlinear Integrable Lattice 
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Input:  lattice, current, rms emittances 
Output:  nearly-matched beam at s = 0 

Courant-Snyder 
transformation 

+ 
average w/r/t 
betatron phase 

Courant-Snyder 
transformation-1 

+ 
use equilibrium 

SC potential  

Periodic lattice 

s = 0 s = L 

drift NLI 

H(s) = Hext(s) + �(s)

“Equivalent” constant  
focusing lattice 

self-consistent equilibrium 

ψ = 0 ψ = 2πν 
hHN i = hHext

N i+ h�N i

fN ( ) = G(Hext

N ( ) + h�N i)



 
 

Conclusions 
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•  A new PDE solver was applied to study Vlasov equilibria in a nonlinear channel constructed from 

the IOTA nonlinear insert potential.  Numerical tests verify that the resulting beam equilibria are 
indeed stationary.  Transition from non-equilibrium to equilibrium was investigated. 

 
•  Nonlinear self-consistent beam equilibria at high intensity exhibit unusual features, including 
      a bimodal vertical beam profile and an “hourglass” contour in the x-y plane.  
 
•  In general, the dynamics at high current reveals complex regions of integrable and bounded 

chaotic motion, with the size of the integrable region decreasing as current is increased. 
 
•  Suggested a procedure to use rms envelope equations and constant focusing equilibria  
       to improve a procedure for matching with space charge to the IOTA ring (tests in progress).  
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•  Backup Material 



 
 

120 mA Equilibrium Beam Propagating in the Total Constant 
Focusing Potential:  Preservation of Spatial Beam Profile, 74 m 
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The same thermal equilibrium beam:  
120 mA, 1M particles, was used as in 
the prior tracking study. 
 
The spectral Garlerkin PDE solver 
produces as output a set of 15x15 
Fourier coefficients for the equilibrium 
space charge potential. 
 
Instead of tracking particles using the 
symplectic spectral space charge 
solver, particles are tracked using the 
potential reconstructed from these 
Fourier coefficients. 
 
(No space charge solver is used.)  



 
 

1.  Choose desired values of the beam emittances and current (perveance K). 
2.  Use the rms envelope equations in the bare lattice to find a set of matched envelopes 
       and the corresponding Twiss functions and phase advances over one period. 
3.  Tune the bare lattice settings to produce nπ phase advance across the arc (from 
       NLI exit to entrance) and to match the design Twiss parameters at the NLI entrance 
       and exit. 
4.  Transform the Hamiltonian of the physical lattice into C-S normalized coordinates  
       associated with the bare lattice Twiss functions, yielding a Hamiltonian HN . 
5.  Average HN over the bare betatron phase, to yield a constant-focusing Hamiltonian. 
6.  Solve the PDE for the equilibrium space charge potential using the Hamiltonian HN . 
7.  Use the equilibrium space charge potential in the original (non-averaged) HN . 
8.  Generate a distribution fN of the desired current and emittances by taking the  
      desired function G of HN . 
9.   Transform the sampled particles from the distribution fN from normalized coordinates 
       to physical coordinates using the bare lattice Twiss functions at the lattice location 
       of interest. 

Proposed Nonlinear Integrable Lattice Matching Procedure 


