
Simple cleanups to LArSoft

Kyle J. Knoepfel
26 March 2019



Motivation

For LArSoft, I often see developers adding code, but rarely see
developers removing it. Reasons for this:

Maybe you are concerned about breaking downstream code
Maybe you don’t have the time
You might need it later
Maybe you don’t care
Maybe you don’t know that you should care

Why should you care?

2/16 26 March 2019 | Simple cleanups to LArSoft



Motivation

For LArSoft, I often see developers adding code, but rarely see
developers removing it. Reasons for this:

Maybe you are concerned about breaking downstream code
Maybe you don’t have the time
You might need it later
Maybe you don’t care
Maybe you don’t know that you should care

Why should you care?

2/16 26 March 2019 | Simple cleanups to LArSoft



Motivation

As software projects evolve, they often get larger. This isn’t a bad thing,
per se, but it has consequences:

The code takes longer to build
The installed software takes up more space
The code becomes harder to keep working
The code becomes harder to understand

Unless developers proactively take steps to keep things maintainable,
the code base will continue to grow until it becomes too wieldy.

Today, I want to discuss simple ways of cleaning up LArSoft code.
Specifically, the changes suggested today do not relate to software
design. They are guidelines that can be adopted as you go.

3/16 26 March 2019 | Simple cleanups to LArSoft



Motivation

As software projects evolve, they often get larger. This isn’t a bad thing,
per se, but it has consequences:

The code takes longer to build
The installed software takes up more space
The code becomes harder to keep working
The code becomes harder to understand

Unless developers proactively take steps to keep things maintainable,
the code base will continue to grow until it becomes too wieldy.

Today, I want to discuss simple ways of cleaning up LArSoft code.
Specifically, the changes suggested today do not relate to software
design. They are guidelines that can be adopted as you go.

3/16 26 March 2019 | Simple cleanups to LArSoft



Motivation

As software projects evolve, they often get larger. This isn’t a bad thing,
per se, but it has consequences:

The code takes longer to build
The installed software takes up more space
The code becomes harder to keep working
The code becomes harder to understand

Unless developers proactively take steps to keep things maintainable,
the code base will continue to grow until it becomes too wieldy.

Today, I want to discuss simple ways of cleaning up LArSoft code.
Specifically, the changes suggested today do not relate to software
design. They are guidelines that can be adopted as you go.

3/16 26 March 2019 | Simple cleanups to LArSoft



Setting the stage

According to running cloc over the develop branch of the LArSoft
packages, LArSoft has anywhere from 300-500K lines of code:

---------------------------------------------------
Language files blank comment code
---------------------------------------------------
C++ 1177 75446 67111 257680
C/C++ Header 1010 31044 67529 67473
CMake 260 1226 859 6438
XML 20 195 294 5221
---------------------------------------------------
SUM: 2467 107911 135793 336812
---------------------------------------------------

Wilson Hall 9th floor guidance:

Strive to make commits that remove more code than they add.
The easiest code to maintain is the code that doesn’t exist.

4/16 26 March 2019 | Simple cleanups to LArSoft



Setting the stage

According to running cloc over the develop branch of the LArSoft
packages, LArSoft has anywhere from 300-500K lines of code:

---------------------------------------------------
Language files blank comment code
---------------------------------------------------
C++ 1177 75446 67111 257680
C/C++ Header 1010 31044 67529 67473
CMake 260 1226 859 6438
XML 20 195 294 5221
---------------------------------------------------
SUM: 2467 107911 135793 336812
---------------------------------------------------

Wilson Hall 9th floor guidance:

Strive to make commits that remove more code than they add.
The easiest code to maintain is the code that doesn’t exist.

4/16 26 March 2019 | Simple cleanups to LArSoft



Step 1: Remove unnecessary files

Remove files that you know are not needed. This may take approval
from the collaboration.

Examples of this include:

Code that is not built/installed.
Empty files (or those only with comments)
Any art module separated into a header and .cc file (only .cc
needed)

5/16 26 March 2019 | Simple cleanups to LArSoft



Step 2: Remove unnecessary header dependencies

I did a test to see how much time it takes to build SimWire_module.cc. I
then systematically removed code to gauge the effect of the headers
vs. the code in the file.

Built code Build time1

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s

1 The build time includes the overhead of running ninja, as well as preprocessing, compiling,
and linking.

Due to header guards, it’s difficult to know who contributes the most.
Bottomline, remove unnecessary headers.

6/16 26 March 2019 | Simple cleanups to LArSoft



Step 2: Remove unnecessary header dependencies

I did a test to see how much time it takes to build SimWire_module.cc. I
then systematically removed code to gauge the effect of the headers
vs. the code in the file.

Built code Build time1

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s

1 The build time includes the overhead of running ninja, as well as preprocessing, compiling,
and linking.

Due to header guards, it’s difficult to know who contributes the most.
Bottomline, remove unnecessary headers.

6/16 26 March 2019 | Simple cleanups to LArSoft



Step 2: Remove unnecessary header dependencies

I did a test to see how much time it takes to build SimWire_module.cc. I
then systematically removed code to gauge the effect of the headers
vs. the code in the file.

Built code Build time1

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s

1 The build time includes the overhead of running ninja, as well as preprocessing, compiling,
and linking.

Due to header guards, it’s difficult to know who contributes the most.
Bottomline, remove unnecessary headers.

6/16 26 March 2019 | Simple cleanups to LArSoft



Step 2: Remove unnecessary header dependencies

But what’s an unnecessary header?

Straightforward to .cc files. But if someone is relying on a header
dependency in a header file, then removing an “unused” header
can break downstream code.

Proposal: LArSoft should adopt a policy where header files
include the minimum number of header dependencies.

Discouraged

// MyService.h
// The following headers are used
#include <vector>

// The following headers are not used
#include "mf/.../MessageLogger.h"
#include "art/.../ServiceHandle.h"

Encouraged

// MyService.h
// The following headers are used
#include <vector>

This may break downstream code, but the
fix is usually straightforward, and the
savings is worth it.

7/16 26 March 2019 | Simple cleanups to LArSoft



Step 2: Remove unnecessary header dependencies

But what’s an unnecessary header?

Straightforward to .cc files. But if someone is relying on a header
dependency in a header file, then removing an “unused” header
can break downstream code.

Proposal: LArSoft should adopt a policy where header files
include the minimum number of header dependencies.

Discouraged

// MyService.h
// The following headers are used
#include <vector>

// The following headers are not used
#include "mf/.../MessageLogger.h"
#include "art/.../ServiceHandle.h"

Encouraged

// MyService.h
// The following headers are used
#include <vector>

This may break downstream code, but the
fix is usually straightforward, and the
savings is worth it.

7/16 26 March 2019 | Simple cleanups to LArSoft



Step 2: Remove unnecessary header dependencies

But what’s an unnecessary header?

Straightforward to .cc files. But if someone is relying on a header
dependency in a header file, then removing an “unused” header
can break downstream code.

Proposal: LArSoft should adopt a policy where header files
include the minimum number of header dependencies.

Discouraged

// MyService.h
// The following headers are used
#include <vector>

// The following headers are not used
#include "mf/.../MessageLogger.h"
#include "art/.../ServiceHandle.h"

Encouraged

// MyService.h
// The following headers are used
#include <vector>

This may break downstream code, but the
fix is usually straightforward, and the
savings is worth it.

7/16 26 March 2019 | Simple cleanups to LArSoft



Step 2: Remove unnecessary header dependencies

But what’s an unnecessary header?

Straightforward to .cc files. But if someone is relying on a header
dependency in a header file, then removing an “unused” header
can break downstream code.

Proposal: LArSoft should adopt a policy where header files
include the minimum number of header dependencies.

Discouraged

// MyService.h
// The following headers are used
#include <vector>

// The following headers are not used
#include "mf/.../MessageLogger.h"
#include "art/.../ServiceHandle.h"

Encouraged

// MyService.h
// The following headers are used
#include <vector>

This may break downstream code, but the
fix is usually straightforward, and the
savings is worth it.

7/16 26 March 2019 | Simple cleanups to LArSoft



Step 3: Remove unnecessary link-time dependencies

The SimWire test from earlier:

Built code Build time

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s

All steps included linking time. If we reduce the number of linked
libraries. . .

8/16 26 March 2019 | Simple cleanups to LArSoft



Step 3: Remove unnecessary link-time dependencies

The SimWire test from earlier:

Built code Build time

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s
Empty file + only art libraries 0.3 s

Reducing number of linked libraries generally results in minor savings in
build time. The benefits are seen elsewhere (library sizes, run-time
overhead, maintenance).

9/16 26 March 2019 | Simple cleanups to LArSoft



Step 4: Remove unnecessary functions

A common pattern:

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);
~MyProducer();

private:
void produce(art::Event&) override;
void beginJob() override;
void endJob() override;

};

And then later on:

MyProducer::~MyProducer() {}
void MyProducer::beginJob() {}
void MyProducer::endJob() {}

10/16 26 March 2019 | Simple cleanups to LArSoft



Step 4: Remove unnecessary functions

A common pattern:

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);
~MyProducer();

private:
void produce(art::Event&) override;
void beginJob() override;
void endJob() override;

};

And then later on:

MyProducer::~MyProducer() {}
void MyProducer::beginJob() {}
void MyProducer::endJob() {}

10/16 26 March 2019 | Simple cleanups to LArSoft



Step 4: Remove unnecessary functions

If there is no work to be done at {begin,end}{Job,Run,SubRun} for
producers, filters, or analzers, do not provide an override:

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);

private:
void produce(art::Event&) override;

};

11/16 26 March 2019 | Simple cleanups to LArSoft



Step 5: Remove inappropriate preprocessor use

There some places where preprocessor macros are being used when
they shouldn’t be:

ROOT no longer supports the __GCCXML__ preprocessor variable. It
has been replaced by __ROOTCLING__.
Do not place header guards in implementation files.
Do not #define PI 3.1415

12/16 26 March 2019 | Simple cleanups to LArSoft



Step 6: Simplify the code (1)

Defining art modules:

- namespace something {
- DEFINE_ART_MODULE(MyModule)
- }
+ DEFINE_ART_MODULE(something::MyModule)

Iterating over std::map entries:

- for (auto const& pr : some_map) {
- auto const& key = pr.first;
- auto const& value = pr.second;
- ...
- }
+ for (auto const& [key, value] : some_map) {
+ ...
+ }

13/16 26 March 2019 | Simple cleanups to LArSoft



Step 6: Simplify the code (1)

Defining art modules:

- namespace something {
- DEFINE_ART_MODULE(MyModule)
- }
+ DEFINE_ART_MODULE(something::MyModule)

Iterating over std::map entries:

- for (auto const& pr : some_map) {
- auto const& key = pr.first;
- auto const& value = pr.second;
- ...
- }
+ for (auto const& [key, value] : some_map) {
+ ...
+ }

13/16 26 March 2019 | Simple cleanups to LArSoft



Step 6: Simplify the code (2)

Creating std::unique_ptrs:

- std::unique_ptr<MyType> p(new MyType(arg1, arg2, ...));
- auto p = std::unique_ptr<MyType>(new MyType(arg1, arg2, ...));
+ auto p = std::make_unique<MyType>(arg1, arg2, ...);

Nested namespaces:

- namespace a {
- namespace b {
- ...
- }
- }
+ namespace a::b {
+ ...
+ }

14/16 26 March 2019 | Simple cleanups to LArSoft



Step 6: Simplify the code (2)

Creating std::unique_ptrs:

- std::unique_ptr<MyType> p(new MyType(arg1, arg2, ...));
- auto p = std::unique_ptr<MyType>(new MyType(arg1, arg2, ...));
+ auto p = std::make_unique<MyType>(arg1, arg2, ...);

Nested namespaces:

- namespace a {
- namespace b {
- ...
- }
- }
+ namespace a::b {
+ ...
+ }

14/16 26 March 2019 | Simple cleanups to LArSoft



Feature branches

I am working on some feature/knoepfel_cleanups branches for
LArSoft.

The feature branches include:

Removal of __GCCXML__ preprocessor directives
Removal of header guards from module implementation files
Removal of some unnecessary functions
Removal of some unnecessary header dependencies
Removal of many unnecessary link-time dependencies

This changes have removed a few thousand lines of code. Many of the
changes have been committed to LArSoft’s develop branches, but there
are more to go (and I have to make sure I don’t break downstream
code).

15/16 26 March 2019 | Simple cleanups to LArSoft



Next steps

Will give Lynn a concrete list of feature branches in the next week or two.

I think LArSoft would benefit from developing several policies:

When should header dependencies be introduced?
When should link-time dependencies be introduced?
What should the header-guard convention be?

art has an automated header-guard generator.

What about error handling (mea culpa)?
I’m seeing a lot of cet_enable_asserts() in CMakeLists.txt files.

16/16 26 March 2019 | Simple cleanups to LArSoft


