

"First Measurement of the Total Neutron Cross Section on Argon Between 100 and 800 MeV"

Christopher Grant

DUNE Calibration Consortium Meeting - March 29, 2019

Physics Challenges for DUNE

- DUNE will measure the oscillation probability of $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ as a function of neutrino energy
- Oscillation phenomena (like δ_{CP} , θ 's, Δm^2 's, etc) depend on the neutrino energy
- A successful DUNE physics program will rely on a detailed understanding of the correlation between the true neutrino energy (from the beam) and the reconstructed neutrino energy (in the detector) – this is especially true for any differences between v and v

Physics Challenges for DUNE

- First oscillation maximum is around 2.4 GeV (near the "resonance production region") - neutrino cross-sections are highly uncertain, especially in this region
- Many of the neutrino interactions in DUNE will involve baryon resonance production
- Final state interactions of the outgoing hadronic system are also uncertain – neutrons are often a part of this system emerging from the nucleus
- Typical neutron kinetic energies are on the order of hundreds of MeV – these need to be accounted for when reconstructing the incoming neutrino energy

n

LBNF Beam Example

- Neutrons carry away considerable amount of energy that escapes detection
- Different amounts of energy carried away between neutrinos and anti-neutrinos
- No neutron-argon cross-section data above 50 MeV (R.R. Winters et al., PRC 43, 492, 1991) need neutron data at high energies!

Plots from J. Chavez

GENIE used for a simple DUNE LAr volume

Problems Entering into DUNE Physics

- Authors simulated the effect of missing energy in a calorimetric neutrino energy reconstruction for a "DUNE" detector
- Point represents true oscillation parameters with a green shaded region showing the contour around the correct result
- Fitted allowed region shifts relative to true value as we underestimate the missing energy – this is how wrong we could be (unknowingly)

Mini-CAPTAIN

- 400 kg instrumented mass inside a hexagonal TPC with 32 cm drift, 50 cm apothem
- 1000 wire channels, 3mm wire pitch
- 24 x 6 cm² PMT light detection system (Hamamatsu R8520-506 MOD)
- Same cold electronics as MicroBooNE

Neutron Beam at LANL (LANSCE)

- Los Alamos Neutron Science Center WNR facility provides a high flux neutron beam with a broad energy spectrum up to 800 MeV
- Mini-CAPTAIN utilized this facility to collect high-energy neutron events in August 2017

Building 1302 Target 4

Flight Path 5: Nuclear Physics and Neutron Radiography

HIPPO: High-Pressure-Preferred Orientation Diffractometer

SMARTS: Spectrometer for Materials Research at Temperature and Stress Target

4FP60R

SPIDER

CHI-NU

ICE House

Mini-CAPTAIN Goals

- Produce neutron-argon cross-section measurements (total, exclusive channels) as a function of neutron kinetic energy
- Develop strategies for incorporating neutron ID and reconstruction in DUNE

4FP60R

SPIDER

CHI-NU

ICE House

Target 4

Flight Path 5: Nuclear Physics and Neutron Radiography

HIPPO: High-Pressure-Preferred Orientation Diffractometer

SMARTS: Spectrometer for Materials Research at Temperature and Stress Target

Building 1302

DANCE: Detector for Advanced

Neutron Capture Experiments

Neutron Beam Structure

- Nominal time structure of the beam
 - sub-nanosecond pulses 1.8 microseconds apart within a 625 μs long macro pulse
 - Repetition rate: 100 Hz

- Facility is designed to deliver high flux we want <1 neutron per TPC drift length (200 μ s)
- Broad energy spectrum we would like our measurements to be as a function of neutron kinetic energy

- To achieve low neutron flux:
 - Constrain the shutters
 - Special low-intensity running nominal bunch spacing changed from 1.8 μ s to 200 μ s yielding 3 bunches per macropulse
- We ran in two modes:
 - 1. highly constrained shutters doesn't impact other users
 - 2. moderately constrained shutters with special bunch spacing annoys every other user in the facility

- To achieve low neutron flux:
 - Constrain the shutters
 - Special low-intensity running nominal bunch spacing changed from 1.8 μ s to 200 μ s yielding 3 bunches per macro-pulse
- We ran in two modes:
 - 1. highly constrained shutters doesn't impact other users
 - 2. moderately constrained shutters with special bunch spacing annoys every other user in the facility

Neutron flux monitors

Fission chamber in 4FP15R

- For some measurements, an external understanding of the neutron spectrum may be important
- Fission chamber useful for high neutron fluxes (~10⁻⁵ interaction rate) – standard facility equipment
- Scintillator detector (stilbene) useful for low neutron fluxes (~10⁻² interaction rate) – deployed by CAPTAIN
- Cross-calibrate scintillator detector with fission chamber at moderately high flux

CAPTAIN Collaboration

- Alabama: Ion Stancu
- LBL: Craig Tull
- Boston University: Christopher Grant
- BNL: Hucheng Chen, Veljko Radeka, Craig Thorn
- UC Davis: Daine Danielson, Steven Gardiner, Emilja Pantic, Robert Svoboda
- UC Irvine: Jianming Bian, Scott Locke, Michael Smy
- UC Los Angeles: David Cline, Hanguo Wang
- UC San Diego: George Fuller
- Hawaii: Jelena Maricic, Marc Rosen, Yujing Sun
- Houston: Lisa Whitehead

- LANL: Elena Guardincerri, Nicholas Kamp, David Lee, William Louis, Geoff Mills, Jacqueline Mirabal-Martinez, Jason Medina, John Ramsey, Keith Rielage, Constantine Sinnis, Walter Sondheim, Charles Taylor, Richard Van de Water
- New Mexico: Michael Gold, Alexandre Mills, Brad Philipbar
- New Mexico State: Robert Cooper
- University of Pennsylvania: Connor Callahan, Jorge Chaves, Shannon Glavin, Avery Karlin, Christopher Mauger, Keith Wiley
- Stony Brook: Neha Dokania, Clark McGrew, Sergey Martynenko, Chiaki Yanagisawa

Spokesperson: Christopher Mauger; Deputy Spokesperson: Clark McGrew

Triggering Mini-CAPTAIN

- Beam facility provides an RF signal for every micro pulse that is then distributed to TPC and photon detection system
- TPC takes data for 4.75 ms when the first RF from a 625 μs macro pulse is received
 - 1.85 ms of buffered pre-trigger data
 - ~ 2.3 ms of post-trigger data; cosmics collected during this time (for calibration)
- All 3 micro pulses of a macro pulse fall within the same TPC acquisition window
- Photon detection system receives the RF signal independently and needs to be synced with TPC offline
 - Also allowed to self-trigger, independent of the RF trigger, if enough light is collected
 - Provided an accurate measure of the beginning of the drift time

Proton Candidate with a Cosmic Candidate

- Several hundred thousand beam triggers were collected
- Currently analyzed our special lowintensity run sample ("golden sample") - 3 bunches per macropulse
- Good LAr purity (e^{-1} lifetime > 72 μ s)
- Low electronics noise
- 1st measurement is an absolute total cross-section – also looking for exclusive channels

Basic Analysis Strategy

- Find tracks in the time-projection chamber (TPC) in time with the beam and in the beam spot
- Match the tracks in the TPC to hits in the photon detection system (PDS)
- Use the timing from the PDS to determine the neutron energy kinetic energy bin
- For tracks (track starting position) in each kinetic energy bin, fit an exponential decay function

Finding Tracks

- Raw signals from TPC wires were filtered for electronic noise – hits were formed from waveform peaks
- Custom-made algorithm found 2D clusters in a single plane and build 3D tracks from one track in collection plane and one track in an induction plane
- Beam is not precisely in the x-direction detector was slightly rotated relative to the beam direction
- Track cannot be more than ± 27 mm away from the beam path through the TPC

Plenty of possible cosmics and secondary interactions can be seen in addition to beam events

Hit-finding efficiency

- Exposure of 4.3 hours at WNR yielded 115,880 reconstructed tracks
 - Require the following:
 - at least 10 MeV track
 - within 32 μ s of an RF signal
 - no more than ±27mm from beam line
 - \rightarrow These cuts yield 9,911 tracks
- Lower x (downstream) has higher efficiency than upstream

 data analyses only uses downstream tracks (starting at or below wire 180) to avoid this inefficiency problem

 \rightarrow Left with 2,631 tracks after this selection criteria

Gaps in the plot are wires that have been masked due to low efficiency

Cross section measurement

 Tracks are binned based on their kinetic energy – distributions of starting positions (x) fit in the direction of the beam with an exponential function

$$N(x) = N_0 e^{-n\sigma_T x} \qquad n = \rho_{Ar} \times \frac{N_A}{m_{Ar}} = 2.11 \times 10^{22} \text{ cm}^{-3} \qquad \begin{array}{l} \rho_{Ar} = 1.3973 \text{ g/cm}^3 \\ N_A = 6.022 \times 10^{22} \text{ n/mol} \\ m_{Ar} = 39.948 \text{ g/mol} \end{array}$$

Cross section extracted in each kinetic energy bin (shown below)

TABLE I. Neutron cross section in bins of kinetic energy. The χ^2 per degrees of freedom is presented, as well as the total number of tracks used for the fit in each bin. The exact functional form used for the fits is $f(x) = c_1 e^{-c_2 x}$. The cross section is extracted from the fitted parameter according to Equation 1.

Energy range [MeV]	Cross Section [barns]	χ^2/ndof	Number of tracks
100-199	$0.49{\pm}0.34$	1.48/3	264
199-296	$0.88{\pm}0.16$	11.81/7	536
296-369	$0.89{\pm}0.26$	4.739/5	329
369-481	$0.94{\pm}0.20$	8.262/6	413
481-674	$1.20{\pm}0.18$	5.713/6	624
674-900	0.83 ± 0.32	0.1323/4	252

Cross section Measurement

- Current cross section measurement is dominated by statistical uncertainty
 - Uncertainty on position reconstruction of tracks was less than 4% and is negligible compared to statistical uncertainty
 - Reconstructed angle of track has less than a few percent uncertainty
 - Multiple track events could introduce as much as 10% variation in our cross-section – still not as large as statistical uncertainty
- Measured cross section is more or less consistent with models used in GEANT4 (QGSP_BERT) and FLUKA. However, some fine-tuning of models could provide better agreement with the Mini-CAPTAIN data.

Note: noticeable deviation of data from models around 600 MeV

Conclusions

• Measured total neutron cross section on argon by Mini-CAPTAIN consistent with an energy averaged cross section of:

0.91 ± 0.10 (stat.) ± 0.09 (sys.) barns

- Measurements will help constrain uncertainties in models of neutron transport and help improve reconstruction performance in DUNE
- Data set used for this analysis corresponded to lowest intensity beam configuration – in future we will include additional data sets in other beam configurations