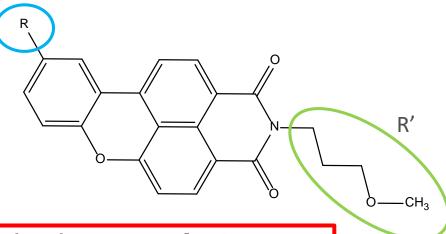


SAC – DETECTOR WORKING GROUP: Plastic Scintillators


Jim Freeman Anna Pla-Dalmau April 19, 2019

DOPANTS – GREEN-EMITTING AND FAST?

With $R = Methyl group \rightarrow K27$

Most green WLS fibers use K27:

- Commercial source?
- 12 ns decay time
- Why?
 - Stable! And good LY

- Developed a synthetic route → 4 steps
- Started to make variations:
 - Change R and R'
- Goal Shorten the decay time without losing light yield

DOPANTS – BARIUM FLUORIDE

- Extruded plastic scintillator with *micron-size* barium fluoride
 - Light yield increase (thin sample, not very clear)
 - Repeat with *nano-sized* barium fluoride
- Ordered toluene solution of barium fluoride nanoparticles
 - Tested in styrene polymerization FAILED
 - incompatible coating
 - Tested in polystyrene castings OK, pending LY measurements
 - Not tested in extrusion yet
 - Presence of high Z materials ->
 Improve scintillator sensitivity to
 high energy photons

3D PRINTING SCINTILLATOR MATERIALS

- Tested @ FNAL years ago:
 - Made polystyrene scintillator filament with lab-size extruder
 - Not clear 20% LY of regular scintillator
- UV-curing acrylates are available
- Explore polysiloxanes:
 - Very clear and radiation hard
 - Commercial products?
 - Scintillation properties?
 - Many do not scintillate

- Develop the ink formula
- Develop the scintillator formula

