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A whole other talk,  
mostly for computing group
https://arxiv.org/abs/1904.08986

https://arxiv.org/abs/1904.08986
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ASICs

???

At > ~1ms  (network 
switching latencies), this hits 

the  domain of CPU/GPU 
and you’re better off going 

to industry tools.


But…

- no time for CPU

- heavy calculation

- high throughput


Custom real-time detector 
AI applications are for you!
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FPGA 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

FPGA 6

O(50-100) optical transceivers 

running at ~O(15) Gbs

Traditionally, FPGAs 
programmed with low-level 

languages like Verilog and VHDL


High level synthesis (HLS) 
New languages C-level 

programming with specialized 
preprocessor directives which 

synthesizes optimized firmware;  
Drastically reduces development 

times for firmware
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Figure 2: A cartoon of a deep, fully connected neural network illustrating the description conventions
used in the text

2.2 Case study: jet substructure

Jets are collimated showers of particles that result from the decay and hadronization of quarks q and
gluons g. At the LHC, due to the high collision energy, a particularly interesting jet signature emerges
from overlapping quark-initiated showers produced in decays of heavy standard model particles. For
example, the W and Z bosons decay to two quarks (qq̄) 67%-70% of the time and the Higgs boson
is predicted to decay to two b-quarks (bb̄) approximatly 58% of the time. The top quark decays to
two light quarks and a b-quark (qq̄b). It is the task of jet substructure [18, 47] to distinguish the
various radiation profiles of these jets from backgrounds consisting mainly of quark (u, d, c, s, b) and
gluon-initiated jets. The tools of jet substructure have been used to distinguish interesting jet signatures
from backgrounds that have production rates hundreds of times larger than the signal [48].

Jet substructure at the LHC has been a particularly active field for machine learning techniques as
jets contain O(100) particles whose properties and correlations may be exploited to identify physics
signals. The high dimensionality and highly correlated nature of the phase space makes this task an
interesting testbed for machine learning techniques. There are many studies that explore this possibility,
both in experiment and theory [18, 39–47, 49–51]. For this reason, we choose to benchmark our FPGA
studies using the jet substructure task.

We give two examples in Fig. 3 where jet substructure techniques in the trigger can play an
important role: low mass hidden hadronic resonances [52] and boosted Higgs produced in gluon
fusion [53]. Both processes are overwhelmed by backgrounds and current trigger strategies would

– 6 –

Oj = Φ(Ii × Wij + bj)
→ ↔ →→

Φ = ACTIVATION FUNCTION  
(NON-LINEARITY)
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2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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hls  4  ml
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

Quantization, Compression, Parallelization made easy with hls4ml!

Results and outlook:  
4000 parameter network inferred in < 100 ns with 30% of FPGA resources!


Muon pT reconstruction with NN reduces rate by 80%

Larger networks and different architectures actively developed (CNN, RNN, Graph)

https://indico.fnal.gov/event/18104/session/23/contribution/71


TECH TRANSFER

LDRD: 

Add “reinforcement learning” to improve accelerator operations


Tuning the Gradient Magnet Power Supply (GMPS) system for 
the Booster

will be a first for accelerators and critical for future machines 

A first proof-of-concept, could apply across the accelerator 
complex
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HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Photonics
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Edge TPU
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Xilinx Versal



PHOTONICS

Even faster — a neural network 
photonics “ASIC” 
Recently fabrication processes have 
become more reliable
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In contact  with 2 
groups (MIT, 

Princeton) on possible 
photonics prototypes



SUMMARY

Real-time AI brings processing power on-detector 
Improves losses in efficiency/performance for triggers - gains back 
physics 

Other physics scenarios?  A lot of efficiency loss from high bandwidth 
systems… 

Want to demonstrate helps with automation and efficiency of system 
operation 

Futuristic technologies could bring even more front end 
processing power 

Hardened vector DSPs, electronics and photonics
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