ProtoDUNE-SP Proton Analysis

Heng-Ye Liao, Glenn Horton-Smith, Tingjun Yang APS April Meeting April 15, 2019

Introduction

- Neutrino oscillation experiments have ushered in a new era with precision measurements employed in the search for CP violation and mass hierarchy.
- Charged-current (CC) interactions are the primary detection channels for neutrino oscillation experiments. Protons are one of the final state particles in neutrino CC interactions such as CC quasi-elastic (CCQE) and CC resonance (CCRES) interactions, and hence they play an essential role in reconstructing the neutrino total energy in the interactions.
 - \rightarrow Must require precise cross section measurements
- Liquid argon time projection chambers (LArTPC) provide excellent tracking and calorimetric capabilities, enabling us to study neutrino-nucleus interactions in unprecedented detail.
- ProtoDUNE-SP experiment
 - → Understand the detector responses of different particles interacting in a LArTPC
 - \rightarrow Prototype detector that form the building blocks for DUNE
- This talk will focus on the ProtoDUNE-SP beam proton analysis

* See details in arXiv:1706.07081, "The Single-Phase ProtoDUNE Technical Design Report"

** PHYS. REV. ACCEL. BEAMS 20, 111001 (2017)

Beam Event Selection & Reconstruction

- Detector response of protons in the LArTPC
 - \rightarrow Deposited energy calibration & reconstruction
 - stopping protons
- Sample: Run 5387 [1 GeV/c] / 180 kV / ~5.5 msec
- Data analysis
 - [1] Distinguish particle species based on the info from TOF & Cherenkov counters from the beanline instrumentation
 - [2] Use Pandora* pattern recognition algorithms for track reconstruction
 - [3] Event selection cuts:
 - -Data cleaning cuts

+Position cuts: start positions of primary proton tracks close to those of the beam track positions

+Angle cut (direction cosine between beam and primary track)

-Stopping proton cut

Use a ratio cut (track length/CSDA) to select the stopping protons [4] Calibration (translate charge deposition to energy deposition)

*Pandora reconstruction algorithms: https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6

Beam Protons (Data)

Stopping Proton

Calibration

Calibration: dQ/dx [ADC/cm] → dE/dx [MeV/cm]

- Procedure
 - dQ/dx correction
 - Use TPC crossing muon tracks for the dQ/dx calibration
 - Correct the non-uniform dQ/dx distribution caused by both attenuation* and space charge effect (SCE)** to the uniform dQ/dx distribution
 - dE/dx calibration
 - Use the stopping muons[†] as a standard candle to translate dQ/dx [ADC/cm] to dQ/dx [fC/cm] (MIP region, 120-200 cm from the stoppping point)
 - Apply the modified box model^o to convert dQ/dx [fC/cm] to dE/dx [MeV/cm]
- It's a preliminary calibration scheme based on the over-all correction
- More dedicated SCE correction scheme is in development
- → See Hannah Rogers' talk in: T12.00005 : "Overview of ProtoDUNE-SP and Initial Study of Space Charge" (04/15, Monday, 4:18 PM–4:30 PM)

□ "A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC" (https://arxiv.org/abs/1306.1712)

* Impurities absorb drifting electrons.

** The space-charge effect occurs as a result of a build up of slow moving ions in a region of the TPC which distorts the E-field. † Cathode piercing tracks which start outside the TPC and end inside the TPC

Proton dE/dx vs Residual Range

Particle Identification (Data)

- dE/dx as a function of residual range for stopping particles offers a robust method for particle identification in a LArTPC.
- ProtoDUNE-SP particle identification: clear µ/p separation

Summary & Outlook

- Preliminary result of the ProtoDUNE proton analysis
 - Track reconstruction
 - Event selection
 - Calibration scheme
 - Particle ID cabability
- More analyses on the way
 - Kinetic energy reconstructions
 - Proton-Argon cross section

Backup

Modified Box Model

C:calibration const. [ADC/ion] (c=6.155x10⁻³ for run #5387) W_{ion} : 23.6 [eV/ion] ε : 0.5 [kV/cm] ρ : 1.38 [g/cm³] β : 0.212 [(keV/cm)(g/cm²)/MeV] a: 0.93

Reference: "A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC" (https://arxiv.org/abs/1306.1712)

Beamline Instrumentation

DUNE

Beamline Instrumentation

Rates at 1 GeV/c

Rate with Collimator

APS April Meeting 2019 Saturday–Tuesday, April 13–16, 2019; Denver, Colorado

Session Index

Session T17: Neutrinos III

Show Abstracts

Sponsoring Units: DPF Chair: Young-Kee Kim Room: Sheraton Grand Ballroom II

Monday, April 15, 2019	<u>T17.00001: Status of the Short-Baseline Near Detector at Fermilab</u>
3:30PM - 3:42PM	Michael R Mooney, Ryan LaZur
Monday, April 15, 2019	T17.00002: Charged and neutral pion production in the MINERvA experiment
3:42PM - 3:54PM	Gonzalo A Diaz Bautista
Monday, April 15, 2019	<u>T17.00003: Initial study of the Neutral Current Single π⁰ production in muon anti-neutrino interaction on water with the P0D Detector at T2K</u>
3:54PM - 4:06PM	Shilin Liu
Monday, April 15, 2019	<u>T17.00004: First Oscillation Results Using Neutrinos and Antineutrinos from the NOvA Experiment</u>
4:06PM - 4:18PM	Erica S Smith
Monday, April 15, 2019 4:18PM - 4:30PM	<u>T17.00005: \$\nu_e\$ signal selection and cross-checks performed using muon removed simulations and cosmic</u> muon brem showers in NOvA Reddy Pratap Gandrajula
Monday, April 15, 2019	T17.00006: Systematic Uncertainties for the NOvA Oscillation Analyses
4:30PM - 4:42PM	Micah Groh
Monday, April 15, 2019	T17.00007: ProtoDUNE Proton Analysis
4:42PM - 4:54PM	Heng-Ye Liao, Glenn Horton-Smith, Tingjun Yang
Monday, April 15, 2019	<u>T17.00008: Measurement of ⁸B Solar Neutrino Flux in the SNO+ Water Phase</u>
4:54PM - 5:06PM	Eric Marzec
Monday, April 15, 2019	T17.00009: Reconstruction Techniques used in the NOvA Experiment
5:06PM - 5:18PM	Nitish Nayak