Energy and Angle Resolutions of Primary Leptons

Dmitrii Torbunov

April 2, 2019

Intro

- In this presentation, I will check whether assumptions on energy and angular resolutions from arxiv:1307.7335 (page 147 Table 4.12) are correct for the primary leptons in ν_μ and ν_e CC atmospheric events.
- To extract information about events I have used Aaron's NDKAna package.
- And I have used the following preselection for the primary leptons:
 - $E_{\rm true} > 50 {\rm MeV}$
 - True lepton trajectory must start and end within detector.

Expected Resolutions

Particle	Resolution
Angular Resolutions	
Electron	1°
Muon	1°
Hadronic System	10°
Energy Resolutions	
Stopping Muon	3%
Exiting Muon	15%
Electron	$1\%/\sqrt{E(GeV)}\oplus 1\%$
Hadronic System	$30\%/\sqrt{E(GeV)}$

01. Muon Energy Resolution

- According to arxiv:1307.7335 page 147 Table 4.12, muon energy resolution is supposed to be around 3% for muons that have stopped inside of the detector
- To get a reco energy of the muon I have used momentum from range tables.
- Among all reco tracks in the event I have choosen one, that is closest by energy to the true track.
- And I have ignored events w/o reco tracks, or events with reco energy of 0.

01. Muon Energy Resolution, Range Tables

Using sigma of the gaussian fit as a metric, energy resolution is about 1.8% which is below 3.0%

02. Muon Angular Resolution

- According to arxiv:1307.7335 page 147 Table 4.12, muon angular resolution is supposed to be around 1°.
- ► As a true direction of the muon I have used true momentum.
- As a reco direction of the muon I have used track direction at the initial vertex.
- Among all reco tracks in the event I have choosen one, that is closest by direction to the true track.

02. Muon Angular Resolution, Angle between True and Reco

Distribution of difference between True and Reco tracks has peak around 2° and sigma of the peak of 2°

03. Electron Energy Resolution

- ▶ According to arxiv:1307.7335 page 147 Table 4.12, electron energy resolution is supposed to be $1\%/\sqrt{E(GeV)} \oplus 1\%$.
- ► As a reco energy I have used calorimetric energy of the shower.
- Among all reco showers in the event I have choosen one, that is closest by energy to the true track.
- And I have ignored events w/o reco showers, or events with reco energy of 0.

03. Electron Energy Resolution, TrueE > 2 GeV

For events with TrueE > 2 GeV, peak is around 9% and its sigma is about 8% \gg expected resolution of 1.2%

03. Electron Energy Resolution, 1 < TrueE < 2 GeV

For events with $1 < {\sf TrueE} < 2$ GeV, peak is around 11% and its sigma is about 12% \gg expected resolution of 1.4%

03. Electron Energy Resolution, $0.5 < \mathsf{TrueE} < 1.0 \ \mathsf{GeV}$

For events with 0.5 < TrueE < 1.0 GeV, I have failed to produce gaussian fit, but the shape is quite similar to the previous case and actual energy resolution is above expected of 1.7%

04. Electron Angular Resolution

- According to arxiv:1307.7335 page 147 Table 4.12, electron angular resolution is supposed to be 1°.
- As a true direction of the electron I have used true momentum.
- As a reco direction of the electron I have used direction of the shower.
- Among all reco showers in the event I have choosen one, that is closest by direction to the true track.

04. Electron Angular Resolution, Angle True and Reco

Distribution of difference between True and Reco tracks has peak around 3° and sigma of the peak of 6° all $>1^\circ$

04. Electron Angular Resolution, Above 1 GeV

For events with TrueE > 1 GeV peak of the distribution is around 1° and sigma of the peak of 3°

Summary

- ▶ Muon Energy Resolution of 1.8% is within expected of 3%.
- Muon Angular Resolution of $\sim 2^{\circ}$ is close to expected of 1° .
- Electron Energy Resolution is much greater than the expected one.
- Electron Angular Resolution of $\sim 6^{\circ}$ is above expected of 1° . But improves to $\sim 3^{\circ}$ for events with true energies above 1 GeV.

Backups

Setup

Data Files:

/pnfs/dune/persistent/dunepro/v06_55_00/detsim
/prodgenie_atmnu_max_dune10kt_1x2x6/

Reco:

standard_reco_dune10kt_1x2x6.fcl

LarSoft:

v07_06_02 -q e17:prof

01. Muon Energy Resolution, Range Tables, All Events

Using sigma of the gaussian fit as a metric, energy resolution is about 2.0%

01. Muon Energy Resolution, Calorimetric Energy, Plane 0

Using sigma of the gaussian fit as a metric, energy resolution is about 5.7%

01. Muon Energy Resolution, Calorimetric Energy, Plane 1

Using sigma of the gaussian fit as a metric, energy resolution is about 5.4%

01. Muon Energy Resolution, Calorimetric Energy, Plane 2

Using sigma of the gaussian fit as a metric, energy resolution is about 5.1%

02. Muon Angular Resolution, Track Direction = End-Start

Distribution of difference between True and Reco tracks has peak around 0.2° and sigma of the peak of 0.2°