PIP-II Facility for Muon CLFV Experiments

Robert Bernstein Fermilab

3 April 2019

R. Bernstein 3 April 2019 1

INTRODUCTION

► There are three main muon CLFV processes: $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, and $\mu^- N \rightarrow e^- N$

Process	Sign of Muon	Pulsed/Steady Beam	Location
$\mu \to e\gamma$	Stopped	steady	PSI
$\mu ightarrow 3e$	Stopped	steady	PSI
$\mu N \rightarrow eN$	Captured	pulsed	FNAL

- μ → eγ, 3e are decay processes; examine *stopped* μ⁺ decays, need μ⁺ since we don't want a capture
- ▶ $\mu N \rightarrow eN$ is a capture process; examine μ^- captures
- Time Structures are different
 - backgrounds for the decay process rise as Intensity/Duty factor from accidental coincidences (grossly oversimplifying backgrounds but this is the core point)
 - ► background for µN → eN is pion-induced, requiring pulsed beam to allow pions to decay

NEXT-GEN EXPERIMENTS

- For $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ about ×100 current intensity
- For $\mu N \rightarrow eN$, see Mu2e-II.
- Can PIP-II do all three, and better?
 - PSI uses about 1% of its beam to power 10⁸ μ⁻ decays/sec from a stopped muon beam (really stop π and let them decay; monochromatic, polarized muons)
 - ▶ 10⁸ muons/sec with about 1% of the PSI beam at 1.1MW
 - Plan to upgrade by about ×100 in HIMB (high intensity muon beam) but this is uncertain and complicated. https://indico.phys.vt.edu/event/34/ contributions/701/attachments/617/785/Papa_ Nufact2018_HiMB.pdf
 - ► Talked with experimenters on MEG, Mu3e. Depends on strength of tie to PSI but not uninterested.
- would have a muon CLFV program with about 600 people moving among experiments, not unlike SBN

WHY ARE THE DECAY EXPERIMENTS DONE BETTER HERE?

- ► In theory, at least, could go well beyond ×100 with a "greenfield" experiment
- power available at PIP-II at PSI, muon program power is shared with other parts of their program and muons are in fact small
- possible advantage of new style of beam
 - a main background to decays is accidentals (two decay in time window, combined fakes signal)
 - size of background drops as vertex resolution improves
 - for µ → eγ, vertex resolution improves as stopping position (range *R*) becomes more tightly defined
 - $\Delta R \sim p^{3.5}$; if we could go below stopped muon beam energy, could improve resolution quickly

CAPTURE SOLENOID + SCRF

- Instead of a high-power 1MW PSI-style target from which we pick off a small number of muons,
 - Use a capture solenoid/lens or other device to focus π⁺ into a beam from PIP-II protons
 - time structure so fast that it's effectively DC (PSI is 300 psec every 19 nsec)
 - Let π⁺ decay and form muon beam (so far this sounds like neutrino experiments!)
 - Now slow down muons to ~ 10 MeV/c (or any other momentum you like) with SCRF (a few meters?) and get ∆R ∝ p^{3.5} smaller
- Talked to PIP-II and of course not discouraging but no resources. Talked to NIU and IIT about a Master's student. Need some dedicated time to see if this is on the mass shell.

Mu2e Beam

- ► ~ 3 × 10¹⁰µ⁻/sec at 8 kW in pulsed beam, 30–40 MeV/c muons (but not monochromatic!)
- ► rotatable collimator at center of S-curve chooses μ^- or μ^+
- (ahem) "just" rotate collimator to select µ⁺ and use 800 MeV PIP-II CW beam instead of 8 GeV pulsed beam from Delivery Ring, send off to decay experiments
- could we build a single Production Solenoid and split at central collimator?
- or even look at forward-muons? (Mu2e looks at backwards-going)
- ► but maybe 100 kW is not completely wrong
 - ▶ loss in rate from transport, cooling, ...
 - ► but we can make > $10^{10}\mu^{-}$ /sec; Mu2e-II should deliver $O(10^{12})\mu^{-}$ /sec at 100 kW