

Northern Illinois University

Design and Analysis of a Halo-Measurement Diagnostics

Northern Illinois University: C. Marshall^{\$}, P. Piot*

Jefferson Lab: S. Benson, J. Guebeli

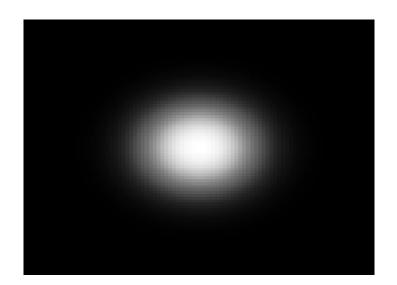
FermiLab: J. Ruan

^{\$} Graduate Student
* Also FermiLab

New Perspectives 2019

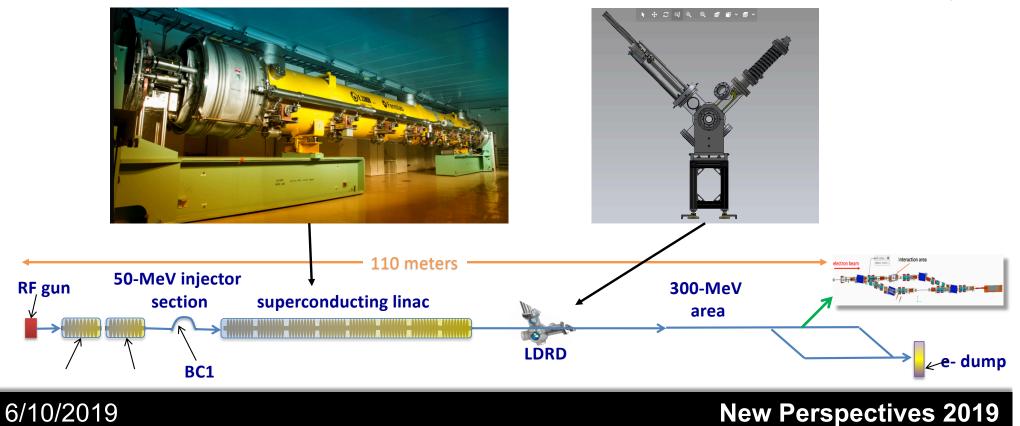
6/10/2019

Table of Contents


- What is a Beam Halo?
- FAST Project
 - Large-dynamical range diagnostics
- Optics Setup
- Ray Transfer Matrix
 - Optical Values
- Future Plans

6/10/2019

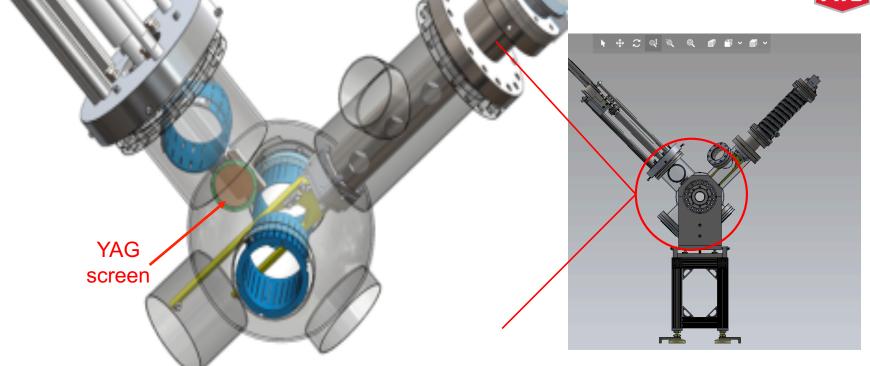
What is a Beam Halo?


- The low intensity of particles surrounding the main core of the beam¹
- This halo can cause beam loss, which could cause issues with experiments
 - Limit the average current of the ERL cooler

6/10/2019

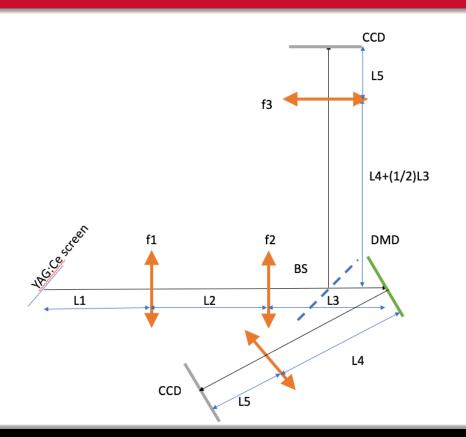

FAST Project²

Large-dynamical-range diagnostics



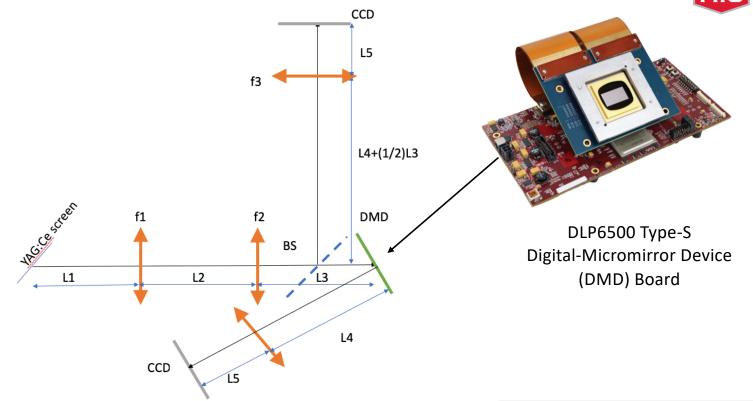
6/10/2019

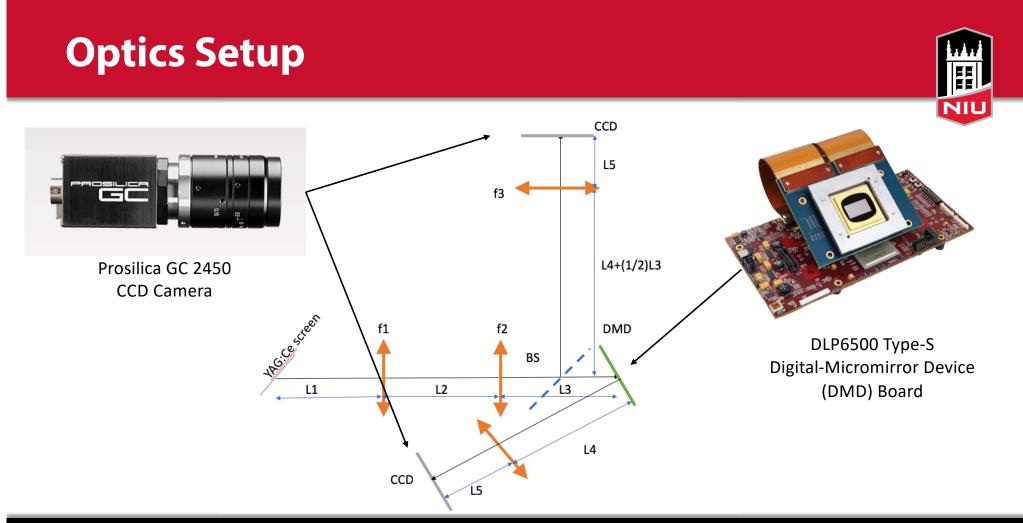
Large-dynamical-range diagnostics



6/10/2019

Optics Setup




6/10/2019

Optics Setup

6/10/2019

6/10/2019

Ray Transfer Matrix

- Want to focus beam on DMD
- Completed with the sympy Python package

$$\begin{bmatrix} r_F \\ \theta_F \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} * \begin{bmatrix} r_i \\ \theta_i \end{bmatrix}$$

6/10/2019

Ray Transfer Matrix

- Want to focus beam on DMD
- Completed with the sympy Python package

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} * \begin{bmatrix} I_{l} \\ \theta_{l} \end{bmatrix}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \left(-\frac{1-\frac{l_{2}}{f_{2}}}{f_{2}} - \frac{1}{f_{1}} \right) l_{3} - \frac{l_{2}}{f_{1}} + 1 & \left(-\frac{(1-\frac{l_{1}}{f_{1}})l_{2}+l_{1}}{f_{2}} - \frac{l_{1}}{f_{1}} + 1 \right) l_{3} + \left(1 - \frac{l_{1}}{f_{1}} \right) \\ -\frac{1-\frac{l_{2}}{f_{2}}}{f_{2}} - \frac{1}{f_{1}} & -\frac{(1-\frac{l_{2}}{f_{2}})l_{2}+l_{1}}{f_{2}} - \frac{l_{1}}{f_{1}} + 1 \end{bmatrix}$$

- r. -

6/10/2019

Optical Values

Component	Value	
f ₁	Constant, can be chosen	
f ₂	Constant, can be chosen	Everything from the YAG screen to the DMD is in terms of
I ₁	Constant based off of LDRD	known constants.
I ₂	$l_2 = \frac{f_1(7f_2 + 13l_1) + 13f_2l_1}{13(-f_1 + l_1)}$	
l ₃	$l_3 = \frac{f_2(7f_1 - 20l_2)}{20(f_1 + f_2 - l_2)}$	

6/10/2019

Optical Values

Component	Value	Everything YAG screen DMD is in to known cons
f ₁	0.025 m	
f ₂	0.030 m	
l ₁	0.314 m	
l ₂	0.061 m	
l ₃	0.255 m	

from the n to the terms of nstants.

6/10/2019

Summary

- Outlined need for halo-measurement
- Designed an optical layout
- Calculated the ray transfer matrix
- Solved for distances using focal lengths of lenses
 - Entry point to DMD

6/10/2019

Future Plans

- Finish optical calculations for remaining variables
- Simulate optical setup with SRW Python program
- Confirm optical setup, purchase apparatus
- Build/test optical setup
- Attach setup to LDRD, take measurements

6/10/2019

Acknowledgements

- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear physics under contract DE-AC05-06OR23177 and DE-AC02-07CH11359.
- ¹Morris, A., & Peggs, S. (2018). A review of various methods of detecting and measuring beam halos. doi:10.2172/1475159
- ²Piot, P., et al. (2019) High-charged magnetized beams at FAST-IOTA. 2019 JLEIC collaboration meeting, Jlab.

6/10/2019