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Neutrino Event Classification

Deep learning is used to classify
νµ, νe , neutral current, and
cosmic events based on the
topology of the interactions

Figure 1: NOvA neutrino events.

Grant Nikseresht Department of Computer Science, Illinois Institute of Technology

Neutrino Event Classification with Deep Learning in NOvA



3/20

References

Neutrino Event Classification

I Cell hits are captured along XZ and YZ
planes and converted to pixel maps

I One charged current νµ event (right)
with two corresponding maps is a typical
input to an event classifier

XZ (top) view

YZ (side) view
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Convolutional Neural Networks

I Convolutional neural networks (CNNs) learn features from images based only
on pixels

I Can be applied directly to images with minimal reconstruction, forgoing the
need for manual feature extraction

I CNNs have become the state-of-the-art technique for image detection problems
across many fields

Grant Nikseresht Department of Computer Science, Illinois Institute of Technology

Neutrino Event Classification with Deep Learning in NOvA



5/20

References

Convolutional Visual Network

Figure 2: CVN Classic architecture. A pair of views for each event enter separate channels
on the left and are mapped to an output class in the final fully connected layer.

I Convolutional Visual Network (CVN) was inspired by GoogLeNet [1] and
characterized by a two tower structure and a sequence of Inception modules

I CVN improved effective exposure by 30% for νe events and 10% for νµ events
compared to non-deep learning based reconstruction methods [2]

I In 2018, improvements in classifier efficiency were found by training RHC and
FHC separately and by pruning layers from CVN Classic to create CVN
ShortSimple
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Improving CVN

I There’s a dedicated effort in NOvA to continue searching for new deep learning
architectures and methods that can:

1. Decrease the model complexity (# of trainable weights)
2. Reduce training and inference time
3. Maximize classifier performance in terms of efficiency and purity

I Two of these efforts are covered in the remainder of this talk:

1. Development of CVN architectures based on residual learning
2. Hyperparameter optimization using the DeepHyper framework at Argonne

National Laboratory (ANL)

I All results here are preliminary and trainings are not final, but are shown to
illustrate relative performance of different methods

I Models are compared using the harmonic mean of purity and efficiency,

F1 = 2 ∗ purity ∗ efficiency

purity + efficiency
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Residual Learning

Residual networks (ResNet) are
made up of chains of residual
blocks

ResNet has been shown to
outperform GoogLeNet on
benchmark image classification
problems [3]

Residual blocks are characterized by a skip
connection that adds the input to a block back at
the end

ResNets allow for training of much deeper
networks
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Parallel View ResNet

I ResNet50 was modified to accept XZ and YZ views as
input to follow the two tower CVN methodology

I Each view is passed through separate channels of 3
residual blocks before being combined and sent
through another 13 residual blocks

I Batch normalization, convolutional, dense, and
pooling layers are contained in the residual block in
between the skip connection
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Model Training

I Neutrino event classifiers were trained on a sample of 6.1 million Monte Carlo
events using CVN ShortSimple (left) and ResNet50 (right) architectures

I ResNet50 continues to show performance improvement after CVN ShortSimple
plateaus
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Model Performance - Efficiency Matrices

Figure 3: CVN ShortSimple, F1 = 0.8702 Figure 4: ResNet50, F1 = 0.8989

Classification efficiency matrices for each classifier - ResNet50 achieves a higher
efficiency for each class compared to CVN ShortSimple
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Model Performance - ROC Curves

Figure 5: CVN ShortSimple Figure 6: ResNet50

Receiver Operating Characteristic (ROC) curves for binary classifiers - ResNet50
achieves higher areas under the curve (AUC) for each class indicating better overall

classifier performance
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Hyperparameter Optimization

I Training of neural networks is governed by
hyperparameters that determine how the optimal
model weights are found by gradient descent

I For neural networks, heuristics are often employed for
choosing hyperparameter values when computational
resources are limited

I Using ANL’s Cooley GPU cluster, we utilize a
framework called DeepHyper [4] which allows for
Bayesian hyperparameter optimization at scale
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DeepHyper

Figure 7: All trials over a 12 hour period
Figure 8: Subset of trials where validation
loss was less than 1.5

Learning rate optimization using DeepHyper - a new learning rate is selected for
each trial based on a maximum likelihood model
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Conclusion

I Improvement of CVN is one of the most critical ways to improve NOvA’s event
selection

I Residual networks are a natural next step in the evolution of CVN and have
shown promise for increasing event classification efficiency

I Scalable hyperparameter optimization can improve the performance of existing
models that could be underoptimized

I Architectural and algorithmic improvements to CVN can improve a multitude of
applications in NOvA including classification of prongs, cosmic rejection, and
semantic segmentation
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Model Performance - Purity Matrices

Figure 9: CVN ShortSimple, F1 = 0.8702 Figure 10: ResNet50, F1 = 0.8989
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ResNet PIDs

Figure 11: CVN PIDs by class output from a trained ResNet50 model
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CVN ShortSimple Architecture
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Inception Modules

I Inception modules are a defining
architectural feature of GoogLeNet

I Convolutions are taken at different
scales and the results are
concatenated to extract features at
different spatial resolutions
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