Progress towards the extraction of exclusive $\nu_\mu^{-40}\text{Ar}$ CCQE–like cross–sections using the MicroBooNE LArTPC detector

A.Papadopoulou
On behalf of the MicroBooNE Collaboration
June 10, 2019
Motivation

Charged Current Quasi–Elastic (CCQE) Interaction Channel

- Dominant interaction at low energies
- Studies of neutrino energy reconstruction
- Allows high precision oscillation studies
Existing Data

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Target</th>
<th>μ-dependence</th>
<th>p-dependence</th>
</tr>
</thead>
</table>
| SciBooNE | ^{12}C | $d\sigma/dE_{\nu}$
doi: 10.1063/1.3661556 | |
| MiniBooNE Detector | ^{12}C | $d^2\sigma/dP_{\mu}d\cos\theta_{\mu}$
| T2K | ^{12}C, ^{16}O | $d\sigma/d\theta_{\mu}$
$d^2\sigma/dP_{\mu}d\cos\theta_{\mu}$
Phys Rev D.98.0124004 | $d^2\sigma/dP_{p}d\cos\theta_{p}$
arXiv:1802.05078 [hep-ex] |
| MINERvA | ^{12}C, ^{56}Fe, ^{208}Pb | $d^2\sigma/dP_{||}dP_{T}$
Phys Rev D97.052002 | $d^2\sigma/dQ^2_{p}$

- Extracted cross-sections on ^{12}C, ^{16}O, ^{56}Fe, ^{208}Pb
- None on ^{40}Ar (heavy asymmetric nucleus, building nucleus of LArTPC detectors)
Objective

First extraction of exclusive $\nu_\mu^{40}\text{Ar}$ CCQE–like differential cross–sections using the MicroBooNE detector.

θ: angle w.r.t. the beam line

ϕ: angle around the beam line
Signal Definition

Vertex of 2 tracks

- 1 muon (≥ 100 MeV/c)
- 1 proton (≥ 300 MeV/c)
- No π^0, no π^\pm (≥ 70 MeV/c)

We allow any number of e, γ, n and charged hadrons below these thresholds, which can be further lowered
Cosmic Background Rejection

- MicroBooNE is a surface detector dominated by cosmics
 - 1 ν interaction in \sim 500 events
 - After trigger application, 1 ν interaction in \sim 10 events

- Development of cosmic rejection machinery using detector and kinematics-based cuts
 - arXiv:1812.05679
Cosmic Background Rejection

Detector–based cuts

- Energy deposition profile
- Track length
- Scintillation light
- Collinearity

Broken Track
Cosmic Background Rejection

Kinematics–based cuts

- Vertex activity
- Coplanarity
- Transverse imbalance $\vec{P}_{miss} = (\vec{P}_\mu + \vec{P}_p)^\perp$
Statistics

- Purity: 78.7 ± 1.1 %
- Efficiency: 15.5 ± 0.2 %

- # events measured: 462.0 ± (stat) 21.5*
- # events expected: 486.4 ± (stat) 5.0

Though low statistics, first indication of consistency between data and simulation

* Using ~ 1 / 20 of the available data–sample
Cross–Section Extraction

- Select events in data sample
- Subtract cosmic related background
- Subtract MC beam related background

\[
\left(\frac{d\sigma}{dp_\mu} \right)_n = \frac{N_n^{on} - N_n^{off} - B_n}{\eta_n^\mu \cdot \Phi_v \cdot N_{targets} \cdot \Delta_n^\mu}
\]

Same for the proton and other kinematic variables
(\frac{d\sigma}{dp_\mu})_n = \frac{N_{on} - N_{off}}{\eta_n \cdot \Phi \cdot N_{targets} \cdot \Delta n \cdot B_n}
Cross–Section Extraction

\[
\left(\frac{d\sigma}{dp_\mu} \right)_n = \frac{N_{on}^n - N_{off}^n - B_n}{\eta_n^\mu \cdot \Phi_n \cdot N_{targets} \cdot \Delta_n^\mu}
\]

\(\eta \) – effective detection efficiency (efficiencies & bin migration)

B – background processes

MC
Cross–Section Extraction

\[
\left(\frac{d\sigma}{dp_\mu} \right)_n = \frac{N_n^{on} - N_n^{off} - B_n}{\eta_n \cdot \Phi_\nu \cdot N_{targets} \cdot \Delta^\mu_n}
\]

\[\Phi_\nu \] – neutrino integrated flux

\[N_{targets} \] – number of nuclei

\[\Delta \] – bin width

{\text{Constants}}
Differential Cross–Sections

Work In Progress

Muons

Protons

d *d*(*cos(θ*)*)

[10⁻³⁸ cm²]

Only statistical errors included

Non–negligible differences
Differential Cross–Sections

Work In Progress

Muons

Protons*

Non–negligible discrepancies

*First attempt to extract proton differential cross–sections at such low momenta
Differential Cross–Sections

Work In Progress

Muons

Protons

Sanity check

Uniform distributions in polar angle
Wrap Up & Future

☑ Progress towards first extraction of exclusive $\nu_\mu - ^{40}\text{Ar}$ CCQE–like differential cross–sections using data from the MicroBooNE LArTPC detector

☑ Finalizing systematical studies

Paper published in the near future
Thank you!
Backup Slides
Goals of the Short Baseline Neutrino program:
- low-energy excess observed by MiniBooNE
- sterile neutrinos
- cross section measurements
- R&D for future LArTPC experiments
The MicroBooNE Detector

- 8192 wires (3 mm pitch)
- 170 ton LArTPC (total mass)
- 32 8” Cryogenic PMTs
Pre–Selection

Hardware and Software Triggers

- 1 ν interaction in ~ 1000 triggered events
- PMT trigger enriches this ratio to 1 ν interaction in ~ 10 events

Collection of track pairs at close proximity

- arXiv:1812.05679
Pre–Selection

- Pairs of tracks at close proximity: distance < 11 cm between any two edges (start-start, start-end, end-start, end-end)
Statistics

<table>
<thead>
<tr>
<th>sample</th>
<th>number of events</th>
<th>beam–on equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam-on</td>
<td>462 ± 21.5</td>
<td>462.0 ± 21.5</td>
</tr>
<tr>
<td>beam-off</td>
<td>15 ± 3.9</td>
<td>10.6 ± 2.7</td>
</tr>
<tr>
<td>overlay</td>
<td>12120.0 ± 110.1</td>
<td>618.3 ± 5.6</td>
</tr>
<tr>
<td>$CC1pO\pi$</td>
<td>9533 ± 97.6</td>
<td>486.4 ± 5.0</td>
</tr>
</tbody>
</table>
Migration Matrices

p_μ

p_p

$\cos \theta_\mu$

$\cos \theta_p$
Effective Efficiency

\[\eta_n = \left(\frac{N_{\text{reconstructed (reco.)}}}{N_{\text{generated (truth)}}} \right)_n \]

\[= \frac{N_{\text{rec (gen. in bin n)}}}{N_{\text{gen (gen. in bin n)}}} \]

\[+ \frac{N_{\text{rec (migrate into bin n)}} - N_{\text{rec (migrate outside bin n)}}}{N_{\text{gen (gen. in bin n)}}} \]

standard efficiency

efficiency + bin migration
Background
Systematics

- ✔ Event selection cuts
- ✔ Beam flux
- ✔ POT
- ✔ Efficiencies due to correlations

- ☑ Detector modeling
- ☑ Event generator