Wrong Sign Contamination in NO ν A

Abhilash Yallappa Dombara

PhD student Adviser: Denver Whittington

Fermilab New Perspectives 2019

Physics department

June 11, 2019

NOvA (NuMI Off-axis ν_e Appearance) experiment

- NOvA is a precision neutrino experiment which uses NuMI (Neutrinos at Main Injector) beam of 740KW
- The detectors is built using highly reflective plastic PVC filled with liquid scintillator (mineral oil + pseudocumene + others)
- Far detector is off-axis by 14mrad because we find a large flux of neutrinos at an energy of 2 GeV, the energy at which oscillation from muon neutrinos to electron neutrinos is expected to be at a maximum.

Comparison of two modes of NuMI beam

Wrong Sign contamination in RHC is "fraction of neutrinos in antineutrino dominant beam"

Why should we estimate wrong sign contamination precisely

• If we don't estimate neutrinos and antineutrinos in the beam precisely it throws off our mass hierarchy and δ_{cp} measurements because these are done based on difference between ν_e and $\overline{\nu}_e$ appearance.

ν_{μ} CC interactions

- Neutrinos produce μ^{-} and more likely proton as end product
- Antineutrinos produce μ^+ and more likely neutron as end product

Different approaches in NOvA

Data-driven methods used for providing a cross check of the simulated wrong-sign component of the antineutrino (RHC) beam using v_e and v_{μ} near detector (ND) selections.

- **1. Neutron Capture method**
- 2. Event level classification of proton and non-proton events using machine learning (Event CVN Proton ID)
- **3. Proton track identification** using machine learning (Prong CVN Proton ID)
- **4. Boosted Decision Tree** (BDT): ν and $\overline{\nu}$ classification

Wrong Sign using neutron capture

Wrong Sign using neutron capture

Relatively small number of neutrons are produced per selected track in RHC data, because μ^+ are not captured by nuclei.

Wrong Sign using neutron capture

Wrong Sign estimation using Event level classification

What is a Prong?

Proton track identification using machine learning (Prong CVN Proton ID)

- We can also use CVN deep learning classification algorithm to classify prongs based on particle type rather than events neutrino topology
- Sample is broken into events with 0 protons and those with one or more proton.

CVN distribution of protons selected by the maximum cvn value after the standard muon-neutrino charged-current inclusive selection.

Wrong Sign using BDT (ν_e)

One can also look at isolating v_e CC events by using certain event topology characteristics with enough separation power and using them as inputs to a Boosted Decision Tree. Several variable are used as input :

- 1. CVN Final State Proton Score
- 2. Reconstructed Shower Inelasticity
- 3. Stretch Factor : $\Sigma = \frac{\rho_{max,z} \rho_{mean,z}}{\rho_{mean,z} \rho_{min,z}}$
- 4. dE/dx energy deposition in first few planes
- 5. Max. Prong CVN Proton Score (For 2+ prong events)
- 6. Gap from Vertex (for Max. Prong CVN Proton Score Prong For 2+ prong events)

Wrong Sign using BDT (ν_e)

One can also look at isolating v_e CC events by using certain event topology characteristics with enough separation power and using them as inputs to a Boosted Decision Tree. Several variable are used as input :

1. CVN Final State Proton Score

2. Reconstructed Shower Inelasticity

3. Stretch Factor :
$$\Sigma = \frac{\rho_{max,z} - \rho_{mean,z}}{\rho_{mean,z} - \rho_{min,z}}$$

- 4. dE/dx energy deposition in first few planes
- 5. Max. Prong CVN Proton Score (For 2+ prong events)
- 6. Gap from Vertex (for Max. Prong CVN Proton Score Prong For 2+ prong events)

Example: RHC event display

Example: FHC event display

Wrong Sign using BDT (ν_e)

One can also look at isolating v_e CC events by using certain event topology characteristics with enough separation power and using them as inputs to a Boosted Decision Tree. Several variable are used as input :

- 1. CVN Final State Proton Score
- 2. Reconstructed Shower Inelasticity
- 3. Stretch Factor : $\Sigma = \frac{\rho_{max,z} \rho_{mean,z}}{\rho_{mean,z} \rho_{min,z}}$

4. dE/dx energy deposition in first few planes

- 5. Max. Prong CVN Proton Score (For 2+ prong events)
- 6. Gap from Vertex (for Max. Prong CVN Proton Score Prong For 2+ prong events)

Example: RHC event display

Example: FHC event display

Wrong sign in BDT (ν_{μ}) - Ongoing

One can also look at isolating ν_{μ} CC events by using certain variables with enough separation power by using them as inputs to a Boosted Decision Tree.

Two sets of variables are used: Raw hits and calibrated hits . This was done to see if calibration has influence on our Wrong Sign estimate.

- 1. Hadronic energy or hadronic hits
- 2. Direction cosine angle of muons compare to direction of beam
- 3. Total energy or total hits
- 4. Muon energy or muon hits
- 5. Orphan hits (hits not grouped into any clusters)
- 6. Michel electrons

Wrong sign in BDT (ν_{μ}) - Ongoing

One can also look at isolating ν_{μ} CC events by using certain variables with enough separation power by using them as inputs to a Boosted Decision Tree.

Two sets of variables are used: Raw hits and calibrated hits . This was done to see if calibration has influence on our Wrong Sign estimate.

1. Hadronic energy or hadronic hits

- 2. Direction cosine angle of muons compare to direction of beam
- 3. Total energy or total hits
- 4. Muon energy or muon hits
- 5. Orphan hits (hits not grouped into any clusters)
- 6. Michel electrons

Hadronic Energy

Example: RHC event display

Example: FHC event display

Wrong sign in BDT (ν_{μ}) - Ongoing

One can also look at isolating ν_{μ} CC events by using certain variables with enough separation power by using them as inputs to a Boosted Decision Tree.

Two sets of variables are used: Raw hits and calibrated hits . This was done to see if calibration has influence on our Wrong Sign estimate.

1. Hadronic energy or hadronic hits

2. Direction cosine angle of muons compare to direction of beam

- 3. Total energy or total hits
- 4. Muon energy or muon hits
- 5. Orphan hits (hits not grouped into any clusters)
- 6. Michel electrons

Example: RHC event display

Example: FHC event display

Results

Conclusion

- It is important to estimate the Wrong sign contamination to get neutrino oscillation parameters right
- An Event can be classified into neutrino or antineutrino event by looking at their end products and kinematic variables
- Various data-driven cross checks has been done to estimate wrong sign contamination in RHC
- Results show that the estimated wrong sign contamination from different methods agree with each other and our simulation

Thank you for your patience.

Questions ??

Backup slides

Computing wrong sign fraction

- 1. S = integrated ve+ v μ + NC(v)
- 2. B = integrated $\bar{ve} + \bar{v\mu} + NC(\bar{v})$
- 3. D = integrated selected data
- 4. RS = right-sign enhanced selection (falls to one side of method)
- 5. WS = wrong-sign enhanced selection (falls to other side of method)

$$\begin{split} \alpha B_{RS} + \beta S_{RS} &= D_{RS} \\ \alpha B_{WS} + \beta S_{WS} &= D_{WS} \end{split} \longrightarrow \\ \mathcal{M} = \begin{bmatrix} B_{RS} & S_{RS} \\ B_{WS} & S_{WS} \end{bmatrix} \longrightarrow \\ \mathcal{C} &= \mathcal{M}^{-1} \begin{bmatrix} \sigma_{data,RS} & 0 \\ 0 & \sigma_{data,WS} \end{bmatrix} \mathcal{M}^{T} \\ \end{split}$$

$$\begin{aligned} \text{Wrong sign fraction is computed using :} \qquad f = \frac{\sum_{i} \beta_{i} WS_{i}}{\sum_{i} (\beta_{i} WS_{i} + \alpha_{i} RS_{i})} \\ \text{Wrong sign fraction for neutron capture:} \qquad f = \frac{\gamma WSCC + \epsilon WSNC}{\gamma WSCC + \epsilon (WSNC + RSNC) + \rho RSCC} \end{aligned}$$