Information on precautionary site access restrictions to Fermilab's Batavia site in response to coronavirus/COVID-19
We continue to review all events currently planned for the next sixty days and organizers will be notified if their event must be canceled, postponed, or held remotely. Please, check back on Indico during this time for updates regarding your meeting specifics.
As DOE O 142.3A, Unclassified Foreign Visits and Assignments Program (FVA) applies not only to physical access to DOE sites, technologies, and equipment, but also information, all remote events hosted by Fermilab must comply with FVA requirements. This includes participant registration and agenda review. Please contact Melissa Ormond, FVA Manager, with any questions.

indico search will be reestablished in the next version upgrade of the software: https://getindico.io/roadmap/
For public events you may use either https://library.fnal.gov/indico-search/ or your browser's search engine: "your search string" site:indico.fnal.gov

10-11 June 2019
Fermi National Accelerator Laboratory
US/Central timezone

Cosmogenic Background Suppression at the SBN Far Detector (ICARUS) with the Cosmic Ray Tagging System

Jun 10, 2019, 4:15 PM
15m
One West (Fermi National Accelerator Laboratory)

One West

Fermi National Accelerator Laboratory

Speaker

Mr Christopher Hilgenberg (Colorado State University)

Description

As the SBN far-detector, the ICARUS T600, a set of liquid argon time-projection chambers (TPC), will operate at shallow depth and therefore be exposed to the full surface flux of cosmic rays. This poses a problematic background to the neutrino oscillation search, especially photons produced by muons passing in close proximity to, but not through, the active volume. A direct way to reject this background is to surround the cryostat with a detector capable of tagging incident cosmic muons with high efficiency (95%), the cosmic ray tagging system (CRT). I will present my work on a method of separating background muons from neutrino interactions in the fiducial volume by a time-of-flight measurement between the CRT and the signal from scintillation light in the TPC.

Primary author

Mr Christopher Hilgenberg (Colorado State University)

Presentation Materials