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Introduction

Counter-rotating beams of bunches of protons cross, producing
multiple collisions of protons

Clustering resulting tracks along beam axis determines the p-p
collision points

Currently performed classically via deterministic annealing

We use quantum annealing, p-p collision points = centroid of tracks
belonging to a single cluster

Centroid-based clustering is NP-hard, often heuristics are applied to
find local minima solutions
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What is a Quantum Computer?

A quantum computer is a machine that utilizes the
unique properties of quantum mechanics to perform
calculations

e Two Paradigms
o Quantum Circuits
o Quantum Annealers



Quantum Annealers — D-Wave

e Not a universal quantum computer

o Cannot implement Shor’s Algorithm, Grover’s Algorithm, ...
o Can still do prime number factorization!

e Quantum Processing Unit (QPU) made of ~2048 rf-SQUIDs (radio

frequency-superconducting quantum interference device) acting as qubits

o Programmable external biases and couplings between qubits are made available
o Not a fully connected graph of qubits

e System can be modeled as an Ising model
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Qubits on Hardware

Chimera Graph

Top: A flux qubit made from an RF-SQUID. Bottom: The unit
cell as it appears on the hardware. [Link to D-Wave]

The chimera graph showcasing the limited connectivity of the
qubits. [Link to D-Wave]



https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest/intro.html
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware

Quantum Annealers — Annealing Schedule

Practical approximation to an adiabatic
quantum computer

e Adiabatic Theorem - A physical system
remains in its instantaneous eigenstate if a
given perturbation is acting on it slowly
enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian's
spectrum [1]

e Final state is the ground state and the optimal
solution to the problem Hamiltonian

Annealing Schedule
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https://docs.dwavesys.com/docs/latest/c_qpu_0.html
https://docs.dwavesys.com/docs/latest/c_qpu_0.html

The Algorithm



The Problem

Cluster reconstructed particle
tracks to determine location of
proton-proton collision

Currently a classical algorithm
performs this analysis -
deterministic annealing

Quantum annealing seems like a
natural step forwards

Maps naturally onto the Ising
Hamiltonian

An event in CMS with 78 p-p collisions. Green
lines are charged particle tracks, yellow dots are
p-p collisions.



The Formulation

p-p collision number: Q D D

-

Tracks “cutting” beam axis
at physical positions

A graphical representation of the algorithm



The Formulation
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The Formulation
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The Formulation
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The Formulation
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Constraint to ensure
a track belongs to a
single cluster

The Formulation
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The Formulation

Constraint to ensure a track
belongs to a single cluster
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m— 10000 QA solution energies
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The energy spectrum of solutions for one event with 3 p-p A histogram of QPU convergence efficiency for 3 p-p
collisions and 15 tracks explored by the QPU with 10,000 collisions and 15 tracks using 100 events.
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Results

e Efficiency decreases with problem
complexity

2 vertices, 10 tracks
3 vertices, 9 tracks

2 vertices, 16 tracks
3 vertices, 15 tracks
4 vertices, 12 tracks

e Could have been used for Tevatron

4 vertices, 16 tracks

>
%)
=
2
L
£
©
Q
o
| =
o
o
b
o
>
o
o)
&)

+ e x <« P> RO

5 vertices, 15 tracks

e Number of samples, N, required for 95%
confidence in at least one correct answer
with mean efficiency ¢:

N =log, 0.05

o 2 samples (330 us) required for 2
vertices, 10 tracks or 16 tracks

30 0 50 60 70 80
o 10000 samples (1.6 s) required for 5 Logical qubits

vertices, 15 tracks Plot of convergence efficiencies for various event topologies




Outlook — 3 Obstacles for Reaching LHC Event Complexities

e Limitation on convergence efficiency
o Modifications to distortion W —> W — \/\/\J
function

Reverse Annealing process.. [Link to D-Wave]

o “Reverse Annealing” used to go
from local minima solutions to f —
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https://docs.dwavesys.com/docs/latest/c_qpu_0.html
https://docs.dwavesys.com/docs/latest/c_fd_ra.html
https://docs.dwavesys.com/docs/latest/c_qpu_0.html
https://docs.dwavesys.com/docs/latest/c_qpu_0.html

Outlook — 3 Obstacles for Reaching LHC Event Complexities

e Failure of graph embedding
o Limited connectivity leads to long chains of physical qubits
o Deterministic embedding may be possible
o Offsetting longer chains of qubits to anneal later in the schedule
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Effect of anneal offsets on A(s) and B(s). [Link to D-Wave] Pegasus architecture showing qubit connectivity. [Link to
D-Wave]



https://docs.dwavesys.com/docs/latest/c_qpu_0.html
https://www.dwavesys.com/press-releases/d-wave-previews-next-generation-quantum-computing-platform
https://www.dwavesys.com/press-releases/d-wave-previews-next-generation-quantum-computing-platform

Outlook — 3 Obstacles for Reaching LHC Event Complexities

e Number of qubits available

o 20 p-p collision positions and
1,000 tracks will require
20,000 logical qubits with
current formulation

o Hierarchical clustering with
current formulation
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o Rose’s Law - Number of
qubits doubles every two
years




Summary

e Determining p-p collision points with track clustering is

possible with QA
e Could have been used at Tevatron, does not currently

scale to LHC
e 3 obstacles for reaching LHC



Questions?

E-mail: awildrid@purdue.edu
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Data

e Atrtificial events generated from known CMS event distributions

e Multiple event topologies are explored

e https://twiki.cern.ch/twiki/bin/view/CMSPublic/TrackingPOGPerformance201
/MC#Expected_resolutions_on_track pa



Is D-Wave Quantum?

e Entanglement in a Quantum Annealing Processor, T. Lanting et
al. DOI: 10.1103/PhysRevX.4.021041
o Showed quantum entanglement and coherence existed for 2
qubit and 8 qubit systems
e Quantum annealing with manufactured spins, M. W. Johnson
et al. Nature volume 473, pages 194-198 (12 May 2011)
o Showed quantum annealing performs better than thermal
annealing
o Has a temperature dependence that is quantum



https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevX.4.021041&v=24edd30f

P vs NP vs NP-hard vs NP-complete

e P -can be solved and verified in
polynomial time

e NP - can be verified in polynomial time

e NP-Hard - is “harder” than any other NP
problem. “Hard” to solve, “hard” to check
(for now)

e NP-Complete - is “harder” than any other
NP problems and is in NP

NP-Complete
P=NP=

NP-Complete

Complexity

Euler diagram for P, NP, NP-Complete, NP-Hard
[wikipedial


https://en.wikipedia.org/wiki/NP_(complexity)

