

# MicroBooNE in 10 Minutes

Katrina Miller, on behalf of the MicroBooNE Collaboration

New Perspectives 2019 (Fermilab)

krm29@uchicago.edu



## Neutrino Oscillations

 neutrinos of the Standard Model are massless & come in three flavors:



- discovery of flavor oscillations → neutrinos have mass!
- in a two-neutrino approximation, the appearance probability is given by:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2[eV^2] L [km]}{E_{\nu} [GeV]}\right)$$





## Short-Baseline Neutrino Anomaly

 $L/E\approx 1\,m/MeV \Rightarrow \Delta m^2 {\sim} \; 1\; eV^2$ 

- 2001: LSND observes excess of EM-like events
  - 3-neutrino model predicts no oscillations
  - 3.8 $\sigma$  excess consistent with  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  oscillations
- 2009: **MiniBooNE** reports excess for both  $\nu \& \overline{\nu}$  data with 4.7 $\sigma$  significance
  - different systematics, energy, & event signature
  - unable to distinguish electrons & photons



# Short-Baseline Neutrino Anomaly

 $L/E \approx 1\,m/MeV \Rightarrow \Delta m^2 {\sim} \; 1\; eV^2$ 

- 2001: LSND observes excess of EM-like events
  - 3-neutrino model predicts no oscillations
  - 3.8 $\sigma$  excess consistent with  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  oscillations
- 2009: **MiniBooNE** reports excess for both  $\nu \& \bar{\nu}$  data with 4.7 $\sigma$  significance
  - different systematics, energy, & event signature
  - unable to distinguish electrons & photons









K. Miller | University of Chicago

# LArTPCs

 liquid argon time projection chambers (LArTPCs) give us high quality tracking, imaging, calorimetry



- electric field drifts ionization electrons to anode plane
- scintillation measured with optical detection system (t = 0)
- TPCs provide 3D reconstruction of particle trajectories inside the detector





LArTPCs can discriminate electrons & photons—ideal for investigating the short-baseline neutrino anomaly!

#### Calorimetric Discrimination of $e/\gamma$ in ArgoNeut\*



# The MicroBooNE Detector

We are here!

- 170-ton liquid argon detector located 470 m from the target of the BNB
- running since October 2015
- largest neutrino dataset collected in a LArTPC to date



#### **On-Axis BNB Flux @ MicroBooNE**



- 8 GeV proton beam incident on a beryllium target
- flux is mostly  $v_{\mu}/\bar{v}_{\mu}$  (99.5%) with small amount of  $v_e/\bar{v}_e$  (0.5%)
- ~300,000  $u_{\mu}$  & ~ 3000  $u_{e}$  events observed thus far!



#### **On-Axis BNB Flux @ MicroBooNE**



- 8 GeV proton beam incident on a beryllium target
- flux is mostly  $v_{\mu}/\bar{v}_{\mu}$  (99.5%) with small amount of  $v_e/\bar{v}_e$  (0.5%)
- ~300,000  $u_{\mu}$  & ~ 3000  $u_{e}$  events observed thus far!



- MicroBooNE sits 8° off-axis from NuMI beamline
- 120 GeV proton beam incident on a graphite target
- higher intrinsic  $v_e/\bar{v}_e$  flux (~5%)



# The MicroBooNE Detector

The Physics Program:

- Investigate the EM-like event excess previously reported by MiniBooNE
- Study various neutrino interactions in LAr & measure low-energy cross sections
- R&D for future long-baseline experiments (DUNE)



# The MicroBooNE Detector

One of three LArTPCs making up the Short-Baseline Neutrino (SBN) Program!





![](_page_12_Picture_0.jpeg)

### NuMI: Run 5280 Subrun 66 Event 3329

proton

![](_page_13_Figure_1.jpeg)

electron signature: shower attached to vertex 1. 2. low dE/dx at start of shower

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_4.jpeg)

wire #

 $\nu_e$ 

time

### **MicroBooNE's Physics Program:**

- R&D for future LArTPCs
- v-Ar interactions & cross sections
- EM-like event excess at  $L/E \approx 1 \, m/MeV$

35

Momentum [GeV]

SOM 10

![](_page_14_Figure_4.jpeg)

Convolutional Neural Networks Applied to v *Events in a LArTPC:* JINST 12 P03011 (2017)

![](_page_14_Figure_6.jpeg)

### **MicroBooNE's Physics Program:**

- R&D for future LArTPCs
- v-Ar interactions & cross sections
- EM-like event excess at  $L/E \approx 1 \, m/MeV$

![](_page_15_Figure_4.jpeg)

Inclusive  $v_{\mu}$  Charged Current Differential Cross Section: <u>arXiv:1905.09694</u>

Charged Particle Multiplicity: Eur. Phys. J. C79 248

![](_page_15_Figure_7.jpeg)

#### $v_{\mu}$ Charged Current $\pi^{0}$ Production on Ar: <u>Phys. Rev. D99, 091102(R)</u>

![](_page_15_Figure_9.jpeg)

16

![](_page_16_Picture_0.jpeg)

### **New Perspectives Talks:**

Progress towards the extraction of exclusive v<sub>μ</sub>-<sup>40</sup>Ar cross sections with a single proton using the MicroBooNE LArTPC detector - Afroditi Papadopoulou

Towards the measurement of the charged-current  $v_e$  inclusive cross-section on argon in MicroBooNE using the NuMI beam - Krishan Mistry

Chimera Events in the MicroBooNE Experiment - Polina Abratenko

### **User's Meeting Posters:**

Constraining the Neutral Current  $\pi_0$  Background for MicroBooNE's Single-Photon Search - Andrew Mogan

MicroBooNE's Continuous Readout - Iris Ponce

MicroBooNE's Search for a Single Photon Low Energy Excess Under a Neutral Current  $\Delta \rightarrow N\gamma$  Hypothesis - Kathryn Sutton

Systematic Studies for the Single Photon Analysis at MicroBooNE - Gray Yarbrough

Search For Heavy Neutral Leptons in the MicroBooNE LArTPC - Owen Goodwin

MeV Scale Physics in MicroBooNE - Avinay Bhat

Triggering Efficiency in MicroBooNE - Vincent Basque

Searching for Short-Range Correlations in <sup>40</sup>Ar with MicroBooNE - Samantha Sword-Fehlberg

### Thank you, & stay tuned for more exciting physics!

![](_page_17_Picture_1.jpeg)