

Progress towards the extraction of exclusive ν_{μ} -⁴⁰Ar CCQE–like cross–sections using the MicroBooNE LArTPC detector

A.Papadopoulou On behalf of the MicroBooNE Collaboration June 10, 2019

Motivation

Charged Current Quasi–Elastic (CCQE) Interaction Channel

- Dominant interaction at low energies
- Studies of neutrino energy reconstruction
- Allows high precision oscillation studies

Existing Data

Experiment	Target	µ-dependence	p-dependence	
	¹² C	$d\sigma/dE_{\nu}$ doi: 10.1063/1.3661556		
MiniBooNE Detector	¹² C	$\frac{d^2\sigma}{dP_{\mu}dcos\theta_{\mu}}_{\text{Phys Rev D88 (2013)}}$		
TZ/K	¹² C, ¹⁶ O	$\frac{d\sigma/d\theta_{\mu}}{^{Phys}\text{Rev}\text{D92}(2015)}\\ \frac{d^2\sigma/dP_{\mu}dcos\theta_{\mu}}{PhysRevD.98.0124004}$	$\frac{d^2\sigma/dP_pdcos\theta_p}{arXiv:1802.05078~[hep-ex]}$	
	¹² C, ⁵⁶ Fe, ²⁰⁸ Pb	$\frac{d^2\sigma/dP_{ }dP_T}{}_{Phys \ Rev \ D97.052002}$	$\frac{d^2\sigma}{dQ^2_p}$ Phys Rev Lett 119 (2017)	

- Extracted cross-sections on ¹²C, ¹⁶O, ⁵⁶Fe, ²⁰⁸Pb
 - None on ⁴⁰Ar (heavy asymmetric nucleus, building nucleus of LArTPC detectors)

Objective

First extraction

of exclusive ν_{μ} -⁴⁰Ar CCQE–like differential cross–sections using the MicroBooNE detector

Signal Definition

*We allow any number of e, γ , n and charged hadrons below these thresholds, which can be further lowered

Cosmic Background Rejection

- MicroBooNE is a surface detector dominated by cosmics
 - ▶ 1 ν interaction in ~ 500 events
 - ► After trigger application, 1 v interaction in ~ 10 events
- Development of cosmic rejection machinery using detector and kinematics-based cuts
 - ▶ arXiv:1812.05679

Run 1463 Event 23. August 15th 2015 10:37

Cosmic Background Rejection

Detector-based cuts

- ► Energy deposition profile
- ► Track length
- ► Scintillation light
- ► Collinearity

Broken Track

Cosmic Background Rejection

Kinematics-based cuts

- ► Vertex activity
- ► Coplanarity
- ► Transverse imbalance $\vec{P}_{miss}^{\perp} = (\vec{P}_{\mu} + \vec{P}_{p})^{\perp}$

Statistics

■ Purity: 78.7 ± 1.1 %

Efficiency: $15.5 \pm 0.2 \%$

- # events measured: $462.0 \pm (\text{stat}) 21.5^*$
 - # events expected: $486.4 \pm (\text{stat}) 5.0$

Though low statistics, first indication of **consistency** between data and simulation

* Using ~ 1 / 20 of the available data–sample

- Select events in data sample
- Subtract cosmic related background
- Subtract MC beam related background

$$\left(\frac{d\sigma}{dp_{\mu}}\right)_{n} = \frac{N_{n}^{on} - N_{n}^{off} - B_{n}}{\eta_{n}^{\mu} \cdot \Phi_{\nu} \cdot N_{targets} \cdot \Delta_{n}^{\mu}}$$

*Same for the proton and other kinematic variables

$$\left(\frac{d\sigma}{dp_{\mu}}\right)_{n} = \frac{N_{n}^{on} - N_{n}^{off} - B_{n}}{\eta_{n}^{\mu} \cdot \Phi_{\nu} \cdot N_{targets} \cdot \Delta_{n}^{\mu}}$$

 N^{on} – # of events in beam-on data N^{off} – # of events in beam-off data

DATA

$$\left(\frac{d\sigma}{dp_{\mu}}\right)_{n} = \underbrace{\frac{N_{n}^{on} - N_{n}^{off}}{\eta_{n}^{\mu} \cdot \Phi_{\nu} \cdot N_{targets} \cdot \Delta_{n}^{\mu}}}_{N_{targets} \cdot \Delta_{n}^{\mu}}$$

 η – effective detection efficiency (efficiencies & bin migration) B – background processes

11/27

MC

$$\left(\frac{d\sigma}{dp_{\mu}}\right)_{n} = \frac{N_{n}^{on} - N_{n}^{off} - B_{n}}{\eta_{n}^{\mu} \Phi_{\nu} \cdot N_{targets} \cdot \Delta_{n}^{\mu}}$$

 Φ_{v} – neutrino integrated flux $N_{targets}$ – number of nuclei Δ – bin width

Constants

Differential Cross–Sections

*Only statistical errors included

Non-negligible differencies

Differential Cross–Sections

Non-negligible discrepancies

*First attempt to extract proton differential cross-sections at such low momenta

Differential Cross–Sections

Sanity check

Uniform distributions in polar angle

Wrap Up & Future

✓ Progress towards first extraction of exclusive ν_{μ} -⁴⁰Ar CCQE–like differential cross–sections using data from the MicroBooNE LArTPC detector

☑ Finalizing systematical studies

*Paper published in the near future

Thank you!

Backup Slides

The MicroBooNE Experiment

Goals of the Short Baseline Neutrino program:

- low-energy excess observed by MiniBooNE
- sterile neutrinos
- cross section measurements
- R&D for future LArTPC experiments

The MicroBooNE Detector

Pre-Selection

Hardware and Software Triggers

- ▶ 1 ν interaction in ~ 1000 triggered events
- ▶ PMT trigger enriches this ratio to 1 ν interaction in ~ 10 events

Collection of track pairs at close proximity

▶ arXiv:1812.05679

Pre-Selection

• Pairs of tracks at close proximity: distance < 11 cm between any two edges (start-start, start-end, end-start, end-end)

Statistics

sample	number of events	beam–on equivalent
beam-on	462 ± 21.5	462.0 ± 21.5
beam-off	15 ± 3.9	10.6 ± 2.7
overlay	12120.0 ± 110.1	618.3 ± 5.6
$CC1pO\pi$	9533 ± 97.6	486.4 ± 5.0

Migration Matrices

True bin i

0 1 2 3 4 5 6

	p_l	D					
9	0.00	0.00	0.00	0.00	0.00	0.00	0.79
n'.	0.00	0.00	0.00	0.00	0.01	0.84	0.20
ed b	0.00	0.00	0.00	0.02	0.88	0.15	0.01
3 art	0.00	0.00	0.03	0.90	0.11	0.00	0.00
onst 2	0.00	0.02	0.85	0.08	0.00	0.00	0.00
- Rec	0.05	0.87	0.12	0.00	0.00	0.00	0.00
0	0.95	0.11	0.00	0.00	0.00	0.00	0.00
	0 1 2 3 4 5 6 True bin <i>j</i>						

 $\cos\theta_p$

9	0.00	0.00	0.00	0.00	0.00	0.09	0.90
in ;	0.00	0.00	0.00	0.01	0.13	0.78	0.09
ed b 4	0.01	0.00	0.01	0.18	0.73	0.12	0.00
3 art	0.01	0.01	0.24	0.66	0.13	0.00	0.00
onst 2	0.03	0.19	0.63	0.13	0.01	0.00	0.00
1 Rec	0.33	0.72	0.10	0.01	0.00	0.00	0.00
0	0.62	0.08	0.01	0.01	0.00	0.00	0.00
	0	1	2	3	4	5	6
	True bin j						

Effective Efficiency

$$\eta_n = \left(\frac{N_{\text{reconstructed (reco.)}}}{N_{\text{generated (truth)}}}\right)_n$$
$$= \frac{N_{\text{rec (gen. in bin }n)}}{N_{\text{gen (gen. in bin }n)}} \qquad \text{standard efficiency}$$
$$N_{\text{rec (migrate into bin }n)} = N_{\text{rec (migrate outside bin }n)}$$

 N_{gen} (gen. in bin n)

n)

efficiency + bin migration >

Background

Event selection cuts
Beam flux
POT
Efficiencies due to correlations

✗ Detector modeling

∡ Event generator