HeRALD: Direct Detection with Superfluid 4He

Doug Pinckney on behalf of the HeRALD collaboration 5 June 2019

arXiv:1810.06283v1

HeRALD: Helium Roton Apparatus for Light Dark matter

- Superfluid 4He as a target material
 - Favorable recoil kinematics
 - Recoil energy can be fully reconstructed with TES calorimetry
 - Zero bulk radiogenic backgrounds
 - No Compton backgrounds below 20 eV
- HERON experiment at Brown (Seidel, Maris), proof of concept work

Excitations in Superfluid 4He

Energy Partitioning

```
Blue = quasiparticle
Red = Singlet
Green = Triplet
Grey = IR photon
```

- Nuclear and electron recoils have different energy partitioning!
- Estimated from measured excitation/ionization cross sections
- Compared to other noble elements, lots of energy goes into atomic excitations
- Distinguishable with signal timing

Activities at Berkeley

Blue = quasiparticle
Red = Singlet
Green = Triplet
Grey = IR photon

- Measuring the light yield for nuclear recoils in 4He (red curve)
- Neutron scattering experiment at room and cryogenic temperatures

From V. Velan

Background Simulations

- Uncertainty in neutron flux spectrum low energy
- Radon surface backgrounds not yet considered

Sensitivity Projections

- Solid red curve, 1 kg-day
 @ 40 eV threshold
 - 3.5 eV (sigma) calorimeter resolution
 - 9x "adhesion gain"
 - 5% quasiparticle detection efficiency

Activity at UMass

- Uncertainty in how quasiparticles, triplet excitations interact at surfaces
- 24 keV neutron calibration source
- Adhesion gain: keep calorimeter dry and use materials with higher van der waals attraction
 - Adapting the HERON film burner design, demonstrated but heat load problematic

Heat Load Free Film Stopping

 Cesium coated surfaces, demonstrated but technically difficult

 Atomically sharp knife edges, used by x-ray satellites at higher temperatures, has yet to be conclusively demonstrated

Next Steps

UMass

Dilution
Refrigerator
Arrives
~1 month

He Film Stopping

Quasiparticle Reflection

Adhesion Gain

24 keV neutron calibration source

Berkeley

Scintillation yield measurements

Commissioning a dilution refrigerator (calorimetry)

Extras

From Scott Hertel

Film Burner Model

Experimental film stoppage area

Excitations in Superfluid 4He

Sensitivity Projections Cont.

Curve	Exposure	Threshold	
Solid Red	1 kg-day	40 eV	
Dashed Red	1 kg-yr	10 eV	
Dotted Red	10 kg-yr	0.1 eV	
Dashed-Dotted Red	100 kg-yr	1 meV	
Dashed- Dotted-Dotted Red	100 kg-yr	1 meV	+ off shell phor sensitivity

Extending Sensitivity with Off Shell Interactions

- The 0.6 meV evaporation threshold limits nuclear recoil DM search to m_{DM} >~ 1 MeV
- Can be avoided if we find an excitation with an effective mass closer to the DM mass, allow DM to deposit more energy in the detector
 - In helium this could be recoiling off the bulk fluid and creating off shell quasiparticles

Detecting Vibrations: Vibrations in Helium

- The vibrational ("quasiparticle", "QP")
 excitations we expect to see are phonons
 and rotons
- Velocity is slope of dispersion relation
- Rotons ~ "high momentum phonons"
 - Just another part of the same dispersion relation
 - R- propagates in opposite direction to momentum vector

Distinguishing Quasiparticles and Excitations

- Use signal timing
 - Singlet signal expected to have O(10 ns) fall time, delta function in calorimeter
 - Triplets have O(1 m/s) velocity, observed as a delta function mostly in immersed calorimetry
 - Quasiparticles signal expected to have O(10-100 ms) fall time, mostly observed on surface calorimeter spread out

Example Waveform

- Based on HERON R&D
 - Can distinguish scintillation and evaporation based on timing

J. S. Adams et al. AIP Conference Proceedings 533, 112 (2000) Annotations from Vetri Velan

Another Example Waveform

- Distinguish between different phonon distributions by arrival time in detector
 - R+ arrive first
 - P travel at a mix of slower speeds and arrive next
 - R- can't evaporate directly, need reflection on bottom to convert into R+ or P

FIG. 3. Several fundamental characteristics of superfluid ⁴He quasiparticles are here illustrated. TOP: the dispersion relation. MIDDLE: the group velocity. BOTTOM: transmission probabilities at normal incidence in two cases, incident on a ⁴He-solid interface with solid phonon outgoing state (red dashed) and incident on a ⁴He-vacuum interface with outgoing state a ⁴He atom (blue solid). At both high and low momentum quasiparticles are of finite lifetime, and unlikely to reach an interface before decay.

