Fundamentals of Direct Detection

S. Hertel (U. Massachusetts, Amherst) New Directions in the Search for Light Dark Matter Particles Fermilab June 4, 2019

Caveats/Apologies

- Giving an intro-level talk to a room full of experts…

My goal: tell you things you already know.

- I'm not unbiased...
- Not educated enough to give an intelligent talk on ultralight DM (restricting myself to keV-MeV-GeV mass scale)

The big-picture game target

1) find *initial* **material excitations that**

maximize DM interaction probability

maximize deposited energy

The big-picture game target

1) find *initial* **material excitations that**

maximize DM interaction probability

maximize deposited energy

2) find *signal* **excitations that**

are efficiently produced by energy deposits

efficiently transport energy macroscopic distances

The big-picture game target

1) find *initial* **material excitations that**

maximize DM interaction probability

maximize deposited energy

2) find *signal* **excitations that**

are efficiently produced by energy deposits

efficiently transport energy macroscopic distances

3) find sensors that

efficiently detect excitations

don't produce false signals

The big-picture game

referencing the standard heavymediator nuclear recoil space for a moment…

The big-picture game

exposure is `easy'

Reason 1

all rates are interesting

The big-picture game

→threshold

assuming heavy nuclei... if He say, shifted up and to the left

nuclear recoils are increasingly poor at accepting recoil energy

example statement: if $M_{DM} = 1$ MeV, then max $KE_{DM}=~1eV$, but max E_{NR} only \sim 1 meV

takeaways:

- 1) Below 1GeV, masses increasingly mismatched.
- 2) factor of \sim 10 benefit moving to lightest nuclei. (emphasis should still be on threshold)

nuclear recoils are increasingly poor at accepting recoil energy

need to find ways to transfer energy without requiring momentum (aka: need to find material excitations of low/matching effective mass)

low-momentum (low effective mass) final states to the rescue

low-momentum (low effective mass) final states to the rescue

If one finds a material with excitations of keV effective mass (energy and momentum similar to LDM), can probe to keV mass scale.

(meV threshold)

Remarkable coincidence in DM deBroglie wavelength scale (similar to lattice spacing)

The big-picture game

natural division at ~MeV scale

above MeV: NR still works

below MeV: phonons take over

Big picture

electron scattering to the rescue

1) lower target mass 2) initial non-zero momentum

initial momentum distribution enables nearly any [**△**p,**△**E]

full energy transfer possible over wide mass range.

but again: large suppression

The big-picture game target material sensor **3) find sensors that** efficiently detect excitations don't produce false signals **1) find** *initial* **material excitations that** maximize DM interaction probability maximize deposited energy **1 2 3 2) find** *signal* **excitations that** are efficiently produced by energy deposits efficiently transport energy macroscopic distances

signal carriers target

As we've said, the initial excitation (1) might be

recoiling nucleus recoiling electron some back-to-back state optical phonon

We (typically) don't see the initial excitation, we see its (lower-energy) descendants (2)

recoiling nucleus *movement*: *lattice dislocation*

…

ballistic phonons, heat, phase change

atomic: ionization, excitation (scintillation) *semiconductor*: electron-hole pairs *semimetal*: similar, just lower energy *superconductor*: quasiparticles (`broken cooper pairs')

recoiling optical phonon

lower-energy ballistic phonons

recoiling

electron

signal carriers

choice of signal carrier sets a threshold

atomic excitation is eV-scale. \sim \sim \sim can reach MeV mass longer term, can think about meV electron gaps -> can reach keV mass

signal carriers

choice of signal carrier sets a threshold

atomic excitation is eV-scale. \sim \sim \sim can reach MeV mass longer term, can think about meV electron gaps -> can reach keV mass

(some similar stories on the nuclear recoil and phonon recoil side)

signal carriers

comments on signal carrier mobility

mobility often dictated by a messy world of impurities and defects.

things like -impurities -lattice defects -trapped magnetic flux -complexity of interfaces -position-dependent gap energy

far from the 'theorist world'...;)

when all else fails: continue downconverting all the way (to heat),

and read out a temperature fluctuation.

atomic: ionization, excitation *semiconductor*: electron-hole pairs *semimetal*: similar, just lower energy *superconductor*: quasiparticles etc etc etc

dark counts / noise

'dark counts': spontaneous production of signal quanta by either target or sensor

examples: single electrons leaking out of PMT photocathode single electrons leaking across semiconductor contact single photons emitted by relaxing metastable lattice defects burst of phonons emitted by slip or crack etc.

(often expressions of applied potentials)

'noise': calorimetry often not in the counting regime. instead limited by ambient E&M environment vibration-induced capacitive couplings undesired thermal links etc.

In keV-MeV-GeV regime:

Mobility, dark counts, and noise will dominate the experimentalists' days in lab.

Hard work currently going on these days, plenty of hard work still ahead.

Summary target

1) find *initial* **excitations that**

maximize DM interaction probability

maximize deposited energy (**△**p small)

- use low-mass target particle (options limited)
- use electron's initial momentum
- use multi-component final states
- use low-momentum excitations

2) find *signal* **excitations that**

are efficiently produced by energy deposits

efficiently transport energy macroscopic distances - not at all a given

3) find sensors that

efficiently detect excitations

don't produce false signals

- any applied potential has *some* dark rate to minimize

4) let creativity reign

still plenty of room here for new good ideas at each step