Light Dark Matter Search with Liquid Argon

Masayuki Wada
INFN Cagliari, Italy

June 5 2019
Light Dark Matter Workshop at Fermilab
FEATURES OF NOBLE LIQUID DETECTORS

- **Dense** and easy to purify (good scalability, advantage over solid targets)
- High **scintillation** & **ionization** (low energy threshold, not low enough to search < 1 GeV/c² DM)
- **Transparent** to own scintillation

For TPC

- High electron **mobility** and **low diffusion**
- Amplification for ionization signal
- **Discrimination** electron/nuclear recoils (ER/NR) via ionization/scintillation ratio

Liquid **Xenon**

- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid **Argon**

- lower temperature (Rn purification is easier)
- **Stronger ER discrimination**
- Intrinsic ER BG from ³⁹Ar
- Need wavelength shifter
FEATURES OF NOBLE LIQUID DETECTORS

- **Dense** and **easy to purify** (good scalability, advantage over solid targets)
- High **scintillation & ionization** (low energy threshold, not low enough to search < 1 GeV/c² DM)
- **Transparent** to own scintillation

For TPC
- High electron **mobility** and **low diffusion**
- Amplification for ionization signal
- **Discrimination** electron/nuclear recoils *(ER/NR)* via ionization/scintillation ratio

Liquid Xenon
- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid Argon
- lower temperature (Rn purification is easier)
- **Stronger ER discrimination**
- Intrinsic ER BG from 39Ar
- Need wavelength shifter
COMPARISON WITH XENON100

- **DS-50** has lower BG at the lowest Ne bins.
- **Ar** sees more events with given WIMP mass and cross section.

<table>
<thead>
<tr>
<th>XENON100</th>
<th>DarkSide-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG [evt/keVnr/kg/d]</td>
<td>0.5 (\text{in } [0.7, 1.7] \text{ keVnr})</td>
</tr>
<tr>
<td>BG [evt/keVnr/kg/d]</td>
<td>0.07 (\text{in } [3.4, 9.1] \text{ keVnr})</td>
</tr>
<tr>
<td>Analysis threshold</td>
<td>0.7 keVnr</td>
</tr>
</tbody>
</table>

FIG. 3. Energy distribution of the events remaining in the data set after all data selection cuts. As an example, the expected spectrum for a WIMP of 6 GeV/c\(^2\) and a spin-independent WIMP-nucleon scattering cross section of \(1.5 \times 10^{-41}\) cm\(^2\) is also shown. The corresponding nuclear recoil energy scale is indicated on the top axis. The charge yield model assumed

FIG. 4. Energy distribution of the events remaining in the data set after all data selection cuts. As an example, the expected spectrum for a WIMP of 6 GeV/c\(^2\) and a spin-independent WIMP-nucleon scattering cross section of \(1.5 \times 10^{-41}\) cm\(^2\) is also shown. The corresponding nuclear recoil energy scale is indicated on the top axis. The charge yield model assumed

TABLE I. Acceptances of the different data selections and

- **Single S2 and 10 ms cut** 95% 49041
- **Radial cut (starting events)** 100% 254901

WIMP spectra in Xe and Ar
S2/S1 ratio and Pulse Shape Discrimination (PSD)
WIMPs will generate nuclear recoils (NRs)
DARKSIDE-50

THE TIME-PROJECTION CHAMBER (TPC)

Electron Recoil (ER)

Nuclear Recoil (NR)

S2/S1 ratio and Pulse Shape Discrimination (PSD)

WIMP-like signal!

DM
The events in Ne<4 are delayed electrons related to impurities.

The origin of the excess at low Ne events (4<Ne<10) is unknown and under investigation.
DARKSIDE LOW MASS

CRITERIA FOR FUTURE LAr TPC

- Low activity of 39Ar
- Low impurity
 - good electron lifetime
 - low rate of the single electron events
- Ultra-pure photo-sensor
- Pure (or no) cryostat
Urania (Underground Argon):

- Expansion of the argon extraction plant in Cortez, CO, to reach capacity of **100 kg/day** of Underground Argon

Aria (UAr Purification):

- Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon. A factor 10 reduction of \(^{39}\text{Ar}\) per pass is expected.
Exposure: 1 tonne year

39Ar: 1µBq/kg (currently ~1mBq/kg in DS-50) with 39Ar depletion in Aria plant

SiPM: 50 times lower contribution than currently achieved in DS-20k (cleaner and reduced electronics)

Acrylic: 5 mm thickness with the activities achieved by JUNO collaboration.

No cryostat

Analysis threshold: 2 Ne (~0.4 keVnr)

No systematic uncertainties are included
ASSUMPTIONS

- No BGs except the internal 39Ar BG, external gamma BGs from the detector components, and coherent neutrino BGs (the neutrino electron scattering is an order smaller and ignored).

- Low Ne events will be suppressed via deep fiducialization, pulse shape, and reduced activity in the active volume.
Ultra-light DM ($m_\chi \ll 1$ GeV) scatter off electrons

DM signals are also ER.

The same measured spectrum as the WIMP search can be used.

Two extreme cases of Dark Matter form-factor are considered

- $F_{DM} = 1$ heavy mediator
- $F_{DM} \propto 1/q^2$ light mediator

The dashed lines are with assumptions of 1 uBq/kg for 39Ar, 1 uBq/PDM, Cu cryostat, 80,000 kg day, and 2e-threshold.
NR IONIZATION YIELDS

AmBe neutron source

- MC + Ionization model [1] fit to NR data from AmBe and AmC.
- Need calibration points at low recoil energies

AmC neutron source