DANAE

Direct dArk matter search using DEPFET with repetitive-Nondestructive-readout Application Experiment

Alexander Bähr¹, Holger Kluck^{2,3}, Jelena Ninkovic¹, Jochen Schieck^{2,3}, Johannes Treis¹, Hexi Shi²

¹Halbleiterlabor der Max-Planck-Gesellschaft, Germany

² Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Austria
³ Atominstitut, Technische Universität Wien, Austria

DePleted p-channel Field Effect Transistor (Kemmer & Lutz 1987)

- ▷ MOSFET on n-substrate
- ▷ deep-n implant below gate
 - → potential minimum for electrons
 - → "internal gate" (IG)
 - → Conductivity modulated by electrons
 - Source Follower
 - → Drain Current Readout
- Designation reset via clear and clear gate
- \triangleright good signal to noise
- ▷ unobstructed backside contact; 100% fill factor
- Implementation of additional functionality on pixel level

DePFET as base cell of pixelated sensor

- horizontal row selection
- ▷ vertical signal columns

- ▷ 1 active row, other pixels integrating
- Charge storage and amplified in pixel
- \triangleright Noise 2-4 e⁻ per pixel (@ ~5 µs/row)
- ▷ Energy resolution @ 5.9 keV

FWHM = 130 eV

Repetitive Non-Destructive Readout

Repetitive Non-Destructive Readout

June 2019

Superpixel with 2 DePFETs Internal gates seperated

Superpixel with 2 DePFETs Internal gates seperated Charge transfered between IG1 and IG2 Charge read out n times

Laser

signal

test

Interaction - electron recoil

Signal of few e⁻

Limitation:

Leakage current

- 1e⁻ threshold:
 - Optimize manufacturing
 - Cool sensor
- 2e⁻ threshold:
 - Readout faster

Intrinsic radiation

- Optimize fabrication Extrinsic radiation
- Sensor Shielding

- ▷ Operation of Prototype RNDR DePFET matrix
 - → 64x64 pixel
 - \rightarrow 75x75 µm² pixel size
 - → Temperature down to -150°C
- ▷ Demonstration of DePFET-RNDR on matrix level
- ▷ Leakage current at low temperature
- \triangleright Demonstration of incremental readout

 \triangleright Test of smaller pixel sizes (36x36 μ m²)

▷ Improved technology to reduce single read noise

 \triangleright Large area Matrix (1M – 4M Pixels)

 \triangleright Thicker sensor substrate (up to 1 mm)

▷ Test of Radio purity (already in preparation)

▷ Row-Parallel Readout (Framerate ~0.1 Hz - 1 Hz for n=1000)

 \triangleright Low Noise (newest technology ~2 e⁻ for standard DePFET at 2.5 µs/ row)

▷ "Incremental Readout"

- → Integrate charge over m frames
- → Clear only all kth frame
- → Additional data analysis possible

▷ Manufacturing at MPG Semiconductor Lab

→ Optimization and customization of technology possible

Thanks for your Attention