Cryogenic charge and phonon detectors: EDELWEISS-SubGeV

J. Billard

Institut de Physique Nucléaire de Lyon / CNRS / Université Lyon 1

Light Dark Matter Workshop Chicago, June 3-7, 2019

EDELWEISS-SubGeV: Scientific context

EDELWEISS-SubGeV: *Detector technology*

EDELWEISS-SubGeV: aiming for a kg-scale payload of 30 to 200g Ge detectors running in two modes:

- Low Voltage: Particle ID ER/NR/'unknown backgrounds' and fiducialization (synergy with Ricochet)
- High Voltage: single-e/h sensitivity by operating in a Neganov-Luke mode

1) Scalability to significant payload:	1 kg (30 to 200 g crystals)
2) Heat energy resolution (RMS):	10 eV
3) EM background rejection (LV mode):	>10 ³
4) Operation at high voltages (HV mode):	100V
	 Scalability to significant payload: Heat energy resolution (RMS): EM background rejection (LV mode): Operation at high voltages (HV mode):

Goals 1-to-3 are part of a common effort with the Ricochet collaboration, dedicated to studying CENNS at reactors, in the construction of the CRYOCUBE detector supported by the **ERC-CENNS Starting Grant (2019-2024)**

J. Billard (IPNL)

Goal #1: Scalability and holding system

- High impedance sensors (NTD, NbSi TES and electrodes) are highly sensitive to microphonics
- Highly efficient cryogenic suspension system designed to host kg-scale payloads:
 - sub micro-g/sqrt{hz} level over the detector bandwidth (*limited by accelerometer sensitivity*)
- Detectors are now running in optimal conditions, only *limited by thermodynamic and electronic noises*

- Optimisation of thermal design based on a **fully data driven electro-thermal modeling** (*D. Misiak et al., in preparation*)
- Large improvement on heat energy resolution:
 - 20 eV (RMS) on four 33.4 g Ge crystals
 - 50 eV (RMS) on a 200 g Ge crystals
 - Achieved in above-ground operation (IPNL)
- Thanks to enhanced thermal response sensitivity and improved noise conditions (suspension)

E. Armengaud et al., Phys. Rev. D 99, 082003 (2019)

J. Billard (IPNL)

- Optimisation of thermal design based on a **fully data driven electro-thermal modeling** (*D. Misiak et al., in preparation*)
- Large improvement on heat energy resolution:
 - 20 eV (RMS) on four 33.4 g Ge crystals
 - 50 eV (RMS) on a 200 g Ge crystals
 - Achieved in above-ground operation (IPNL)
- Thanks to enhanced thermal response sensitivity and improved noise conditions (suspension)

E. Armengaud et al., Phys. Rev. D 99, 082003 (2019)

Limited by FET current noise, switch to HEMT in order to reach 10 eV (RMS) on 33.4 g crystals

J. Billard (IPNL)

DM - Nucleus interaction: first Ge-based limit below 1.2 GeV and best above ground limit down to 600 MeV
 Migdal effect: first DM limit down to 45 MeV limited by Earth-Shielding effect (B. Kavanagh, 2017), which becomes significant > 10⁻³¹ cm² (plans to measure this effect with the EDELWEISS experimental setup)
 J. Billard (IPNL)

DM - Nucleus interaction: first Ge-based limit below 1.2 GeV and best above ground limit down to 600 MeV
 Migdal effect: first DM limit down to 45 MeV limited by Earth-Shielding effect (B. Kavanagh, 2017), which becomes significant > 10⁻³¹ cm² (plans to measure this effect with the EDELWEISS experimental setup)
 J. Billard (IPNL)

Goal #3: EM background rejection of O(10³)

20 eV ionization resolution: HEMT preamplifiers + new electrode design

Goal #3: EM background rejection of O(10³)

20 eV ionization resolution: HEMT preamplifiers + new electrode design

- Design of new electrode scheme with following specs.:
 - Low input capacitance (10 to 20 pF)
 - High surface event rejection efficiency (FID mode)
 - Large fiducial volume (75%)
- Aim at O(10³) EM background rejection down to 50 eVnr
- Synergie with the Ricochet-CryoCube collaboration

Goal #4: Operation at high voltage (~100 V)

High Voltage: Exploring DM-electron/nucleus interactions with *near* single-electron sensitivity achieved in massive bolometers operated underground (low-background environment $\sim 1 - 0.1$ DRU).

NbSi209: 200g Ge with TES thermal sensor

RED30 : 33 g Ge Al electrodes, NTD thermal sensor

Conclusions

Take away points:

- From the last few years, there has been an increasing interest in the low-mass dark matter region motivated by lack of evidence of new physics (e.g. LHC, DM searches, ...):
 - Beyond the standard WIMP Dark Matter scenario
- The EDELWEISS-SubGeV program aims at probing this new region of interest with detectors able to provide:
 - Particle identification and surface event rejection down to 50 eVnr (Low Voltage)
 - Single-e/h sensitivity on massive bolometers (High Voltage)
- The low-voltage R&D program is now focusing on the front-end HEMT preamplifier and electrode design
 - first detector prototypes achieving 10 eV heat and 20 eV ionization resolutions by 2020 (Ricochet-CryoCube)
 - Goal is to reach to reach $O(10^{-43})$ cm² from 1 GeV to 10 GeV with 1 kg payload in one year at Modane
- The high-voltage R&D program is near single-e/h sensitivity on 33.4 g and 200 g Ge crystals operated at Modane.
 - First science results expected in fall 2019 !

Back-up

