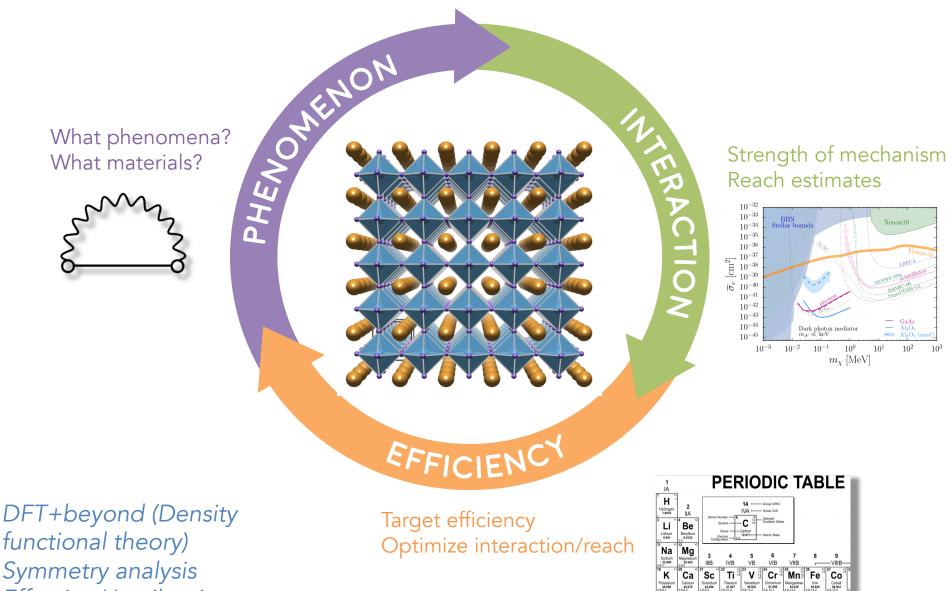
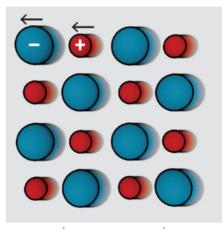
Optical Phonon R&D Or What Condensed Matter Theory/Computation Can do For You



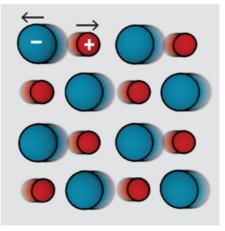
Light years

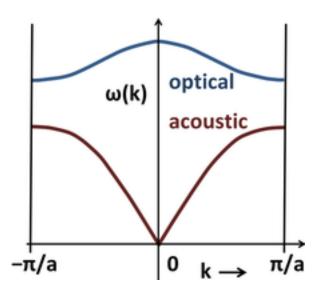
Nanometers

Target Theory and Design

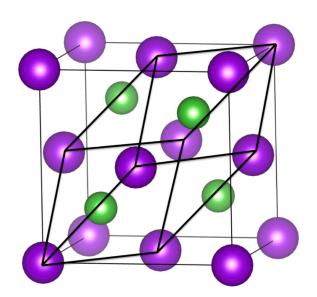

Titanium 47.867

<u>^{**}Sr^{**} Y ^{***}7r^{***}Nh³**Mn³**Tc [‡]**Ru^{**}*Rh^{**}</u>

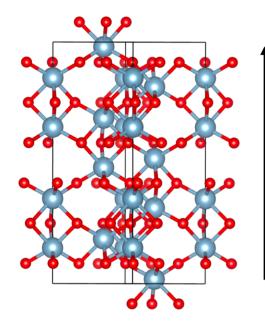

Effective Hamiltonians


Phonons are Lattice Vibrations

Acoustic Phonons

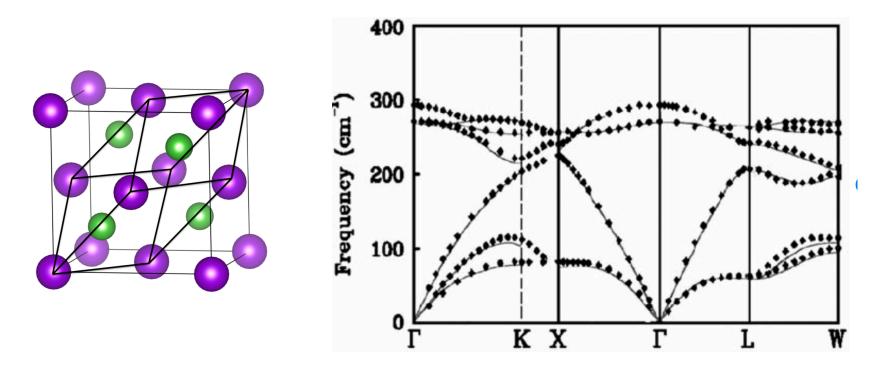

Optical Phonons

What are Polar Materials?


- At least two different ionic species
- Local dipole moment

GaAs

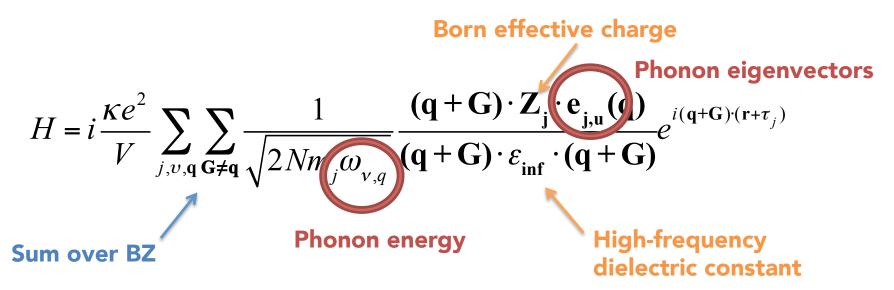
2 atoms in primitive cell

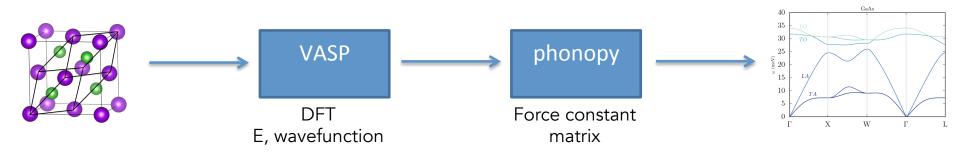

Al₂O₃ (Sapphire)

10 atoms in primitive cell

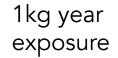
Primary crystal axis

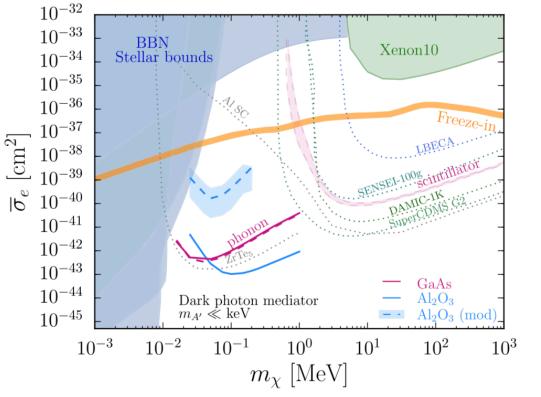
Why Polar Materials?

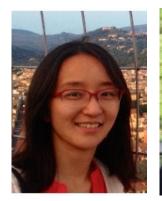



From Strauch & Dorner, JPCM 2 1457 (1990)

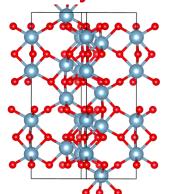
- 1. Kinematic matching with optical phonons
- 2. Small screening (insulating or semiconducting)
- 3. Can have anisotropic crystal structure (directional detection)
- 4. High-quality crystals available now


Discussing DM absorption via dark phonon with optical phonons


Fröhlich Hamiltonian – DM/phonon interaction



Theoretical reach of optical phonons



Tongyan Lin, UCSD

Simon Knapen, IAS

Kathryn Zurek, LBL

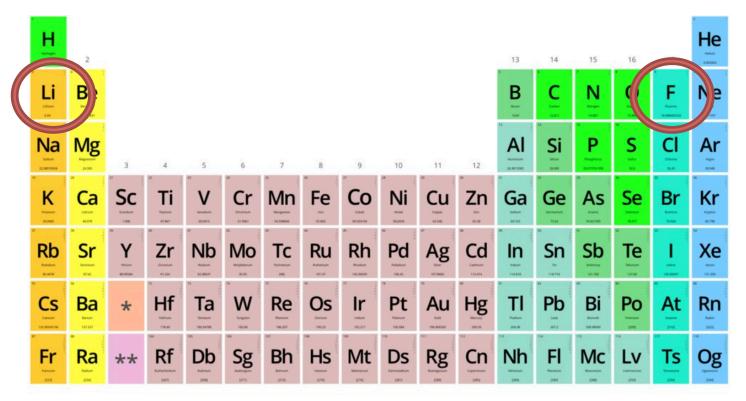
Hidden bonus: directionality!

Primary crystal axis

$$Q = \frac{Z^{*^2}}{A_1 A_2 \varepsilon_{\infty}^2 \omega_{LO}}$$

Z*= Born effective charges A_1, A_2 = atomic mass numbers ε_{inf} = high-frequency dielectric constant w_{LO} = optical phonon frequency

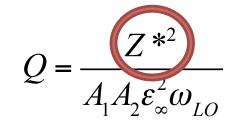
	Ζ*	A ₁	A ₂	Eps_inf	w _{LO} (meV)	Q (E-7)
GaAs	2.27	69.7	74.9	10.89 (14.8)	25, 35	2.4
Al ₂ O ₃	2.98, 1.34	27.0	16.0	3.3	30, 106	80



Kevin Zhang, LBL Tanner Trickle, LBL Kathryn Zurek, LBL

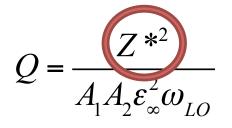
$$Q = \frac{Z^{*^2}}{A_1 A_2 \sum_{\infty}^2 \omega_{LO}}$$

 $\begin{aligned} \mathbf{Z^{*=} Born effective charges} \\ \mathbf{A_{1}, A_{2}=} atomic mass numbers} \\ \epsilon_{inf} = high-frequency dielectric constant} \\ \mathbf{w_{LO}} = optical phonon frequency \end{aligned}$



$$Q = \frac{Z^{*^2}}{A_1 A_2 \sum_{\infty}^2 \omega_{LO}}$$

Z*= Born effective charges A_1, A_2 = atomic mass numbers ε_{inf} = high-frequency dielectric constant w_{LO} = optical phonon frequency

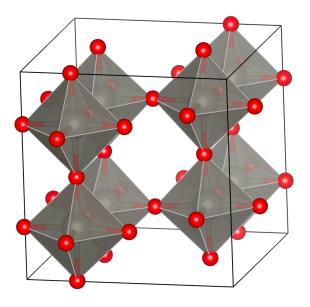

	Ζ*	A ₁	A ₂	Eps_inf	w _{LO} (meV)	Q (E-7)
GaAs	2.27	69.7	74.9	10.89 (14.8)	25, 35	2.4
Al ₂ O ₃	2.98, 1.34	27.0	16.0	3.3	30, 106	80
LiF	1.05	6.9	19.0	2.02	77	268

Z*= Born effective charges A_1, A_2 = atomic mass numbers ε_{inf} = high-frequency dielectric constant w_{LO} = optical phonon frequency

$$Z^* = \frac{V}{e} \frac{\partial P}{\partial u}$$

Materials with large electric polarization?

Z*= Born effective charges A_1, A_2 = atomic mass numbers ε_{inf} = high-frequency dielectric constant w_{LO} = optical phonon frequency


$$Z^* = \frac{V}{e} \frac{\partial P}{\partial u}$$

Materials with large electric polarization?

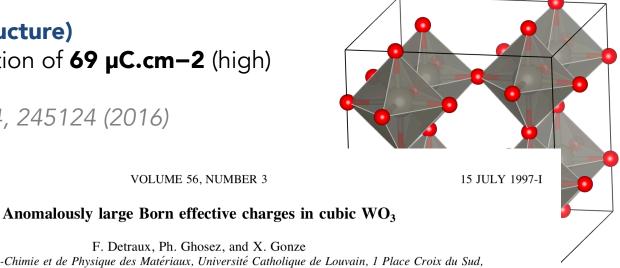
WO₃ (in P4mm structure)

Calculated polarization of **69 µC.cm⁻²** (high)

Hamdi et al. PRB 94, 245124 (2016)

$$Q = \frac{Z^{*2}}{A_1 A_2 \varepsilon_{\infty}^2 \omega_{LO}}$$

Z*= Born effective charges A₁, A₂= atomic mass numbers ε_{inf} = high-frequency dielectric constant \mathbf{w}_{LO} = optical phonon frequency


$$Z^* = \frac{V}{e} \frac{\partial P}{\partial u}$$

Materials with large electric polarization?

WO₃ (in P4mm structure) Calculated polarization of 69 µC.cm-2 (high)

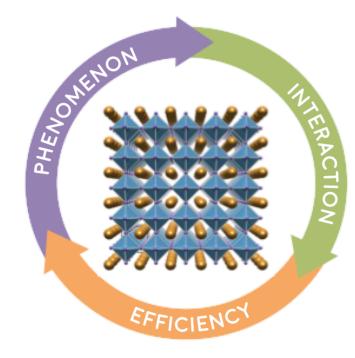
Hamdi et al. PRB 94, 245124 (2016)

PHYSICAL REVIEW B

F. Detraux, Ph. Ghosez, and X. Gonze

Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, 1 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium

VOLUME 56, NUMBER 3


(Received 15 January 1997)

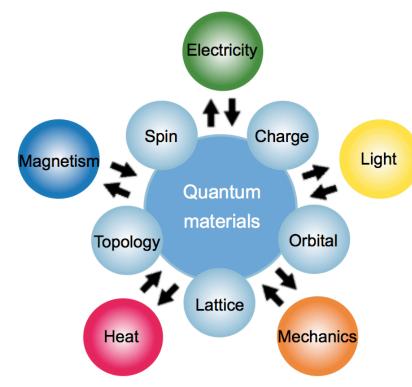
$$Q = \frac{Z^{*^2}}{A_1 A_2 \sum_{\infty}^2 \omega_{LO}}$$

Z*= Born effective charges A_1, A_2 = atomic mass numbers ε_{inf} = high-frequency dielectric constant w_{LO} = optical phonon frequency

	Ζ*	A ₁	A ₂	Eps_inf	w _{LO} (meV)	Q (E-7) (max)
GaAs	2.27	69.7	74.9	10.89 (14.8)	25, 35	2.4
Al ₂ O ₃	2.98, 1.34	27.0	16.0	3.3	30, 106	80
LiF	1.05	6.9	19.0	2.02	77	268
WO ₃	11.73, 8.78, 1.62	183.8	16.0	5	126	556

Optical Phonon Theory and Design – Future

Multi-phonon production


Lin, Knapen Harrelson, Trickle, Zhang, Zurek

Phonon lifetimes Harrelson

Better polar semiconductors

Theory and experiment

Ferroelectrics Lin, Knapen

and the second states of the			STREAM STREAM			
Characterization		Fabrication	Theory	Synthesis		
NCEM National Center for Electron Microscopy	Floor 1 Imaging and Manipulation of Nano- structures	Floor 2 Nano- fabrication	Floor 3 Theory of Nano- structured Materials	Floor 4 Inorganic Nano- structures	Floor 5 Biological Nano- structures	Floor 6 Organic and Macro- molecular Synthesis
Electron microscopy and nano- characterization	Characterization and manipulation of nanostructures	Advanced lithographic and thin-film processing techniques	Guiding understanding of new principles, behavior and experiments	Science of semiconductor, carbon and hybrid nanostructures	Bio-materials; new probes for bio-imaging; synthetic biology techniques	Soft materials: organics, macromolecules, polymers and their assemblies