SUPERCONDUCTING NANOWIRES Karl K. Berggren berggren@mit.edu Dept. of Electrical Engineering and Computer Science Massachusetts Institute of Technology

"LLCD will be the first high-rate space laser communications system that can be operated over a range ten times larger than the near-Earth ranges that have been demonstrated to date." from <u>http://esc.gsfc.nasa.gov/267/271.html</u>, enabled by nanowire detectors developed at MIT Lincoln Laboratory in collaboration with MIT campus.

VLSI Circuit Evaluation

 VLSI circuit imaging and debugging

 SNSPD enables performance advances

Collaboration between BU, DCG Systems, IBM, Photonspot, funded by IARPA

Characteristics of Photon Detectors

SNSPD Timeline

Detection mechanism

Analog Amplifiers (e.g. Transition-Edge Sensors)

Superconductive Nanowire Operation

Why are Superconductors Interesting?

- Zero resistance
- Exclusion of magnetic field

11

• Strong nonlinearity

Timing jitter limited by detector geometry

2019-06-06-Batavia-fermilab

Spatial and temporal resolution in a wire

spatial resolution = timing jitter × speed of light

Slow-wave transmission line

Measured group velocities to date

CPW, 300 nm center conductor width, 3μm gap, SiO2 on Si substrate Signal speed ~2%c Zhao et al. Nat. Photonics 11, 247 (2017)

Microstrip, 300 nm width AlN on Al_2O_3 substrate Signal speed 1.6%*c* Zhu et al. Nat. Nanotech. 13, 596 (2018)

CPW with top ground, 200 nm width, 1µm gap, 450 nm spacer, SOI substrate Signal speed 0.87%*c* Zhu et al. (2018), unpublished

The group velocity can be further reduced by using high-index dielectric materials

In collaboration with Daniel Santavicca (UNF)

width = 300 nm, gap = 100 nm, total length = 19.7 mm, area = $286 \ \mu m \times 193 \ \mu m$

2019-05-10-san ja

Two connectors for one imager (>500 pixels)

Detecting two-photon-firing events

Using SNSPDs in Dark Matter Detection

Nanowire Detection of Photons from the Dark Side

superconducting

Karl K. Berggren (co-Pl, MIT), Sae Woo Nam (co-Pl, NIST), Asimina Arvanitaki (Perimeter), Ilya Charaev (MIT), Jeffrey Chiles (NIST), Andrew E. Dane (MIT), Ken Van Tilburg (NYU/IAS), Masha Baryakhtar (Perimeter), Robert Lasenby (Stanford University), Junwu Huang (Perimeter)

Collaboration of fundamental physics theorists, device designers, and system integrators and engineers:

(1) Use quantum interference of dark matter to build up population in a single-photon state;

(2) Use detector technology perfected for quantum-optics to sense photon.

 10^{-10}

Sun Xenon Solar 10^{-12} Ψ Xenon DM 10^{-14} 10x10 layers, DCR~1/da 10-16 Future reach 20 0.1 0.2 0.5 2 5 10 m_{A'}/eV

 $\lambda/\mu m$

Key advantage of these detectors is low Dark Count Rate (DCR) and low-energy threshold. Depending on number of layers in target, and achievable DCR, reach of experiment could extend well beyond what is possible today

mirror

Could the Detector Itself be a DM Target?

Nanowires-Only Approach

- Use SNSPDs as both target and sensitive sensor for dark matter detection in the lab
- Can detect scattering and absorption processes
- Single/rare event sensitivity
- Low dark counts major advantage
- Low thresholds \implies sensitive to low dark matter masses
- Small devices already play meaningful role

Inspired by related proposals, as well as preceding work: [Hochberg et al, 2017], [Hochberg, Zhao, Zurek, + w/ Pyle, + w/ Lin, 2015] [Hochberg, Charaev, Nam, Verma, Colangolo, **KKB**, 1903.05101, submitted to PRL]

Large-area WSi SNSPD

What Are We Excited About?

- I. Relatively easy apparatus to set deep and broad limits at low energies What Are We Worried About?
- I. When will we start to see background? What will it look like? What will we do about it?

FINANCIAL SUPPORT

Dept. of Energy
U.S. Air force Office of Scientific Research
U.S. Office of Naval Research
DARPA DETECT program IARPA
NASA
NSF
Skoltech
Many U.S. and international fellowships

Dark-Matter Collaborators

Sae Woo Nam

NIST National Institute of Standards and Technology U.S. Department of Commerce

Asimina Arvanitaki PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

Yonit Hochberg

THE HEBREW UNIVERSITY OF JERUSALEM

Robert Lasenby Stanford

Jeff Chiles

Masha Baryakhtar

Ken van Tilburg

Junwu Huang PERIMETER INSTITUTE OR THEORETICAL PHYSICS

Superconductivity Team in QNN Group

Andrew Dane (NASA Fellow)

Reza Baghdadi (Post-Doc)

Emily Toomey (NSF Fellow)

Ilya Charaev (Post-Doc)

Ashley Qu (Grad Student)

Marco Colangelo (Research Fellow)

Di Zhu (A*Star Fellow)

Brenden Butters (Grad Student)

Murat Onen (Grad Student)

Graduated/Former Nathan Abebe Lucy Archer Francesco Bellei Ignacio Estay Forno Niccolo Calandri Yachin lvry Adam McCaughan Faraz Najafi Kristen Sunter Hao-Zhu Wang Qing-Yuan Zhao

Collaborators

Boris Korzh (JPL)

Matthew Shaw (JPL)

- Angle Velasco (JPL)
- Andrew Beyer (JPL)
- Jason Allmaras (JPL)
- Edward Ramirez (JPL)

Daniel Santavicca (UNF)

- Brian Noble (UNF)
- William Strickland (UNF)

Karl. K.Berggren Massachusetts Institute of Technology

Sae Woo Nam National institute of standards And Technology

Asinine Arvanitaki Perimeter Institute for Theoretical Physics

Ken van Tilburg New York University Institute for Advanced Studies

Ilya Charaev Massachusetts Institute of Technology

Jeff Chiles National institute of standards And Technology

Yonit Hochberg

Masha Baryakhtar Hebrew University of Jerusalem New York University

Junwu Huang Perimeter Institute for Theoretical Physics

2019-06

END OF PRESENTATION

Backup

Read out the propagation delay without reflections

Output pulses from the SNSPI

Output pulses from the SNSPI

Output pulses from the SNSPI

