Low-Mass Dark Matter Searches Using Quantum Sensing and Readout with MKIDs and Paramps

> **Ritoban Basu Thakur** on behalf of Golwala-group

## Caltech

New Directions in the Search for Light Dark Matter Particles

🛟 Fermilab

2019/06/06

## Overview

Detector requirements for various detection channels

- Kinetic inductance detector basics
- KID-based architectures for different science goals and expected energy resolutions

Small detectors focused on energy resolution for low-mass reach (< GeV, << GeV)</li>
 Large detectors focused on ER/NR rejection and position reconstruction for neutrino floor reach at 0.5-5 GeV

Progress to date and plans

With thanks to: SuperCDMS Pyle, Zurek, Kurinsky, McKinsey et al

## **Rapid Introduction**

## Motivation for Small Sub-eV **Resolution Detectors**

Current technologies ~I eV threshold

MeV thermal relics, eV dark photons

Need new technologies to access keV thermal relics, meV dark photons!

Sharp targets due to simplicity:

BBN Stellar bounds

 $10^{-32}$  $10^{-33}$ 

 $10^{-34}$ 

 $10^{-35}$ 

 $10^{-36}$ 

 $10^{-37}$ 

 $10^{-38}$  $10^{-39}$ 

 $10^{-40}$ 

 $10^{-41}$  $10^{-42}$ 

 $10^{-43}$ 

 $10^{-44}$ 

 $10^{-45}$ 

 $10^{-3}$ 

 $[\mathrm{cm}^2]$ 

 $\overline{\rho}_{e}$ 

same diagrams for annih. and scatt. no accidental cancellations

Dark photon mediator

 $10^{0}$ 

 $m_{\chi}$  [MeV]

 $10^{1}$ 

 $m_{A'} \ll \text{keV}$ 

 $10^{-1}$ 



 $10^{-2}$ 

## **Basics of Kinetic Inductance Detectors**



Superconductors have an AC inductance due to inertia of Cooper pairs

Changes when Cooper pairs broken by energy, creating quasiparticles (qps) Sense the change by monitoring a resonant circuit

Key point: superconductors provide very high Q ( $Q_i > 10^7$  achieved), so thousands of such resonators can be monitored with a single feedline

## **Basics of Kinetic Inductance Detectors**



## **Detector physics**

## Quasiparticles to Conductivity



# MB gives characteristic T and $\hbar\omega/\Delta$ dependence

$$\frac{\sigma_1}{|\sigma(0)|} = \frac{4}{\pi} \frac{n_{qp}}{2N_0 \Delta} \frac{1}{\sqrt{2\pi \frac{kT}{\Delta}}} \sinh\left(\frac{\hbar\omega}{2kT}\right) K_0\left(\frac{\hbar\omega}{2kT}\right)$$
$$\frac{\sigma_2}{|\sigma(0)|} = 1 - \frac{n_{qp}}{2N_0 \Delta} \left[1 + \sqrt{\frac{2\Delta}{\pi kT}} \exp\left(-\frac{\hbar\omega}{2kT}\right) I_0\left(\frac{\hbar\omega}{2kT}\right)\right]$$

$$2N_0\Delta \left. \frac{\partial(\sigma_1/|\sigma(0)|)}{\partial n_{qp}} \right|_T = \frac{2N_0\Delta}{n_{qp}} \frac{\sigma_1}{|\sigma(0)|}$$

$$2N_0\Delta \left. \frac{\partial(\sigma_2/|\sigma(0)|)}{\partial n_{qp}} \right|_T = \frac{2N_0\Delta}{n_{qp}} \frac{\sigma_2 - \sigma_2(0)}{|\sigma(0)|}$$

### Key features

- Quiescent n<sub>qp</sub> exponentially suppressed as T decreases\*
  - \* as long as no anomalous qp recombination physics

\* as long as no anomalous qp creation

Responsivity only weakly T-dependent (not exponential!)



asymptotic regime; limiting excess qp density n<sub>\*</sub>, or something else? lestone siper the simple CPW resonators antacle (Bafends Till ifilms avith sipeturena)



## Science: goals & prospects

### Small-Detector (gram-scal

Goal: detection of sub-eV energies f

Dark phonon absorption, DM-e scatt

scalar-mediated nucleon scattering at very low recoil energies, directly producing phonons w/o e-h pairs

### Methods:

Detection of qp creation in superconducting target via phonon or qp collection (Hochberg, Zhao, Zurek, arXiv:1504.07237)

Phonons appropriate when  $2\Delta_{substrate} > hv_{phonon}$ : phonons propagate quasi-ballistically with long decay times (100 µs - ms: SuperCDMS, Gaitskell thesis w/high RRR Nb)

Quasiparticles appropriate when  $2\Delta_{substrate} < hv_{phonon}$ : phonons cannot propagate, but qp's can, w/long decay times (e.g.: probably Al, other low T superconductors: untested!)

Detection of optical phonon production in polar materials:

GaAs (Knapen, Lin, Pyle, Zurek, arXiv:1712.06598)

Al<sub>2</sub>O<sub>3</sub> (Griffin, Knapen, Lin, Zurek, arXiv:1807.10291)

### Architecture:

### Single mm-scale KID on gm-scale, few-mm target substrate

Lower-gap superconductor for KID (e.g., AIMn) and/or better amplifiers promise meV-scale resolution



### no quasiparticle trapping!\*

\*of the conventional kind with collector >> KID



superconducting crystal

DM-produced qp

## Small-Detector Architecture <sup>no quasiparticle trapping!</sup> Characteristic Energy Resolution: Optimistic Prediction



### Small-Detector Architecture <sup>no quasiparticle trapping!</sup> Characteristic Energy Resolution: Conservative Prediction

Assume (conservatively):

qp population dominated by readout power generation

dissipation readout (no TLS noise)

amplifier noise dominant over g-r noise (T  $\sim 0.1 T_c$  required)

quasiparticle lifetime in KID << phonon absorption timescale

 $(\tau_{qp} << \tau_{ph,abs} \sim 100 \ \mu s; conservative)$ 

"efficiency factors"  $\chi_c$ ,  $\chi_{qp}$  assumed to be unity by design,  $\chi_{BW} \ll 1$  (conservative)

$$\chi_c = \frac{4 Q_r^2}{Q_i Q_c} \le 1$$
$$\chi_{qp} = \frac{Q_i}{Q_{i,qp}} \le 1$$

$$\chi_{BW} = \frac{\tau_{qp}}{\tau_{abs} + \tau_{qp}} \le 1$$

Reduce  $\Delta$ ,  $T_N$ , increase  $\tau_{qp}$  to get well below eV resolution



### Large-Detector (kg-scale) Architectures

SuperCDMS 0.5-5 GeV search limited by: Bulk cosmogenics producing electron recoils

Surface background rejection



New Directions in Searches for Light DM

Silicon

Raw background spectra expected for

SuperCDMS SNOLAB dominated by :

<sup>32</sup>Si

• ERs from cosmogenics (32Si, 3H)

• continuum gammas

surface events

 $10^{4}$ 

## Large-Detector (kg-scale) Architectures

#### no quasiparticle trapping!

Basu Thakur/Golwala



15

no quasiparticle trapping!

### Large-Detector Architecture

### Characteristic Energy Resolution: Conservative Prediction

Assume (conservatively):

- qp population dominated by readout power generation
- dissipation readout (no TLS noise)
- amplifier noise dominant over g-r noise (T  $\sim 0.1 T_c$  required)
- resonator is coupling dominated ( $Q_i >> Q_c = 10k-50k$ ) so  $\tau_r < \tau_{ph,r}$
- quasiparticle lifetime in KID << phonon absorption timescale ( $\tau_{qp} << \tau_{ph,abs} \sim ms$ ; conservative)

Reduce  $\Delta$ ,  $T_N$ , increase  $\tau_{qp}$  to reach eV resolution



## Laboratory performance

### **KID** Performance



### **KID** Power Pulsing

Calibration of KID response with readout power pulsing



### Calibrate position information with many localized sources!





## Imminent improvements

$$\sigma_E \propto \Delta \sqrt{rac{T_N}{5K}} rac{100 \mu s}{ au_{qp}} \dots$$

Colleagues at JPL (P. Day et al) are developing a quantum-limited amplifier based on:

Nonlinearity due to kinetic inductance

3-wave mixing (DC + pump)

Broadband gain and quantum-limited performance demonstrated



Sum of currents: pump, weak-signal, idler

 $I = \frac{1}{2} \left( \sum_{n} A_n(z) e^{i(k_n z - \omega_n t)} + \text{c.c.} \right)$ 

Transmission line traveling wave eq.

$$\frac{\partial^2 I}{\partial z^2} - \frac{\partial}{\partial t} \left[ \mathcal{L}(I) \mathcal{C} \, \frac{\partial I}{\partial t} \right] = 0$$

### 3-current (nonlinear) mixing

New Directions in Searches for Light DM

Transmission line: df «du «d
$$\theta$$
 (phase) $u(I) = 1/\sqrt{\mathcal{C}\left(\mathcal{L}_g + \mathcal{L}_{k,0}\left(1 + (I/I_*)^2\right)\right)}$ 

Colleagues at JPL (P. Day et al) are developing a quantum-limited amplifier based on: Nonlinearity due to kinetic inductance

3-wave mixing (DC + pump) (really 4 wave, but pumps are degenerate)

Broadband gain and quantum-limited performance demonstrated



Sum of currents: pump, weak-signal, idler  $I = \frac{1}{2} \left( \sum_{n} A_n(z) e^{i(k_n z - \omega_n t)} + \text{c.c.} \right)$ 

Transmission line traveling wave eq.

$$\frac{\partial^2 I}{\partial z^2} - \frac{\partial}{\partial t} \left[ \mathcal{L}(I) \mathcal{C} \, \frac{\partial I}{\partial t} \right] = 0$$

### 3-current (nonlinear) mixing

Transmission line: df  $\propto$  du  $\propto$  d $\theta$  (phase)

$$u(I) = 1/\sqrt{\mathcal{C}\left(\mathcal{L}_g + \mathcal{L}_{k,0}\left(1 + (I/I_*)^2\right)\right)}$$

#### 4-wave mixing (any nonlinear optics text book)

In order to understand the four-wave mixing process, a closer examination of the third order nonlinear polarization must be made. The general form of the polarization may be written as shown in (3).

$$P_{i}(\omega_{4},\vec{r}) = \frac{1}{2} \chi_{ijkl}^{(3)}(-\omega_{4},\omega_{1},-\omega_{2},\omega_{3}) E_{j}(\omega_{1}) E_{k}^{*}(\omega_{2}) E_{l}(\omega_{3}) \exp[i(\vec{k}_{1}-\vec{k}_{2}+\vec{k}_{3})\cdot\vec{r}-i\omega_{4}t] + \text{c.c.}$$
(3)



New Directions in Searches for Light DM

Colleagues at JPL (P. Day et al) are developing a quantum-limited amplifier based on:

Nonlinearity due to kinetic inductance

3-wave mixing (DC + pump)

Broadband gain and quantum-limited performance demonstrated



3-current (nonlinear) mixing



New Directions in Searches for Light DM

Colleagues at JPL (P. Day et al) are developing a quantum-limited amplifier based on:

Nonlinearity due to kinetic inductance

3-wave mixing (DC + pump)

Broadband gain and quantum-limited performance demonstrated



High kinetic inductance thin films requires carful engineering of transmission lines
High Lk materials for higher gains
Phase mismatch for varying frequencies for large BW
Transmission / reflection optimized for large BW



Colleagues at JPL (P. Day et al) are developing a quantum-limited amplifier based on:

Nonlinearity due to kinetic inductance

3-wave mixing (DC + pump)

Broadband gain and quantum-limited performance demonstrated



New version made showing higher Gain! Y-factor noise measurement done!

```
New low-loss a-Si:H
dielectric enables
higher-yield version:
gain demonstrated,
T_N = 4 \times QL at 3 GHz, likely to improve to QL
```





### Plans and Context

Near-term

Using KID pulsing scheme and  ${}^{55}Fe/{}^{129}I$  x-rays to measure baseline  $\sigma_E$ ; position-correct also Mid-term

Provide position reconstruction and NR discrimination to reach neutrino floor > I GeV Provide NR discrimination via e-h spectral peaks to reject dominant tritium and 32Si backgrounds Provide position reconstruction to reject non-cosmogenic surface bgnds (<sup>210</sup>Pb betas and <sup>206</sup>Pb nuclei) Large-detector track I:  $\sigma \sim 5-10 \text{ eV} + \text{HV}$ : QL paramp + I ms qp lifetime

Large-detector track 2:  $\sigma \sim 0.25$  eV at 0V: QL paramp + 1 ms qp lifetime + lower  $\Delta$  + higher KI fraction

#### Small-detector track

Reoptimize design purely for energy resolution and small target size;  $\sigma \sim 0.15$  eV possible with AI Threshold, not position information

Continue using phonon absorption on semiconducting substrates. but begin to consider polar substrates Start with Al<sub>2</sub>O<sub>3</sub>, try out GaAs for better mass reach.

#### Long-term

#### Revisit design for superconducting substrates, $\sigma \sim 1 \text{ meV}$

Use quasiparticles or phonons? Phonon propagation challenging in superconductors (check Gaitskell). Find a configuration that works. Hybrid CPW-lumped element? Microstripline?

### Other efforts? Not many!

#### CALDER = effort to deploy KIDs for photodetection in CUORE follow-on $0\nu\beta\beta$ expt CUPID

No scintillation in TeO<sub>2</sub>, but betas Cherenkov radiate. Separate dominant alpha background from betas by requiring Cherenkov signal. Need  $\sigma \sim 20$  eV to see 100 eV signal  $\rightarrow$  simpler needs.

## Conclusions

KIDs coupled to insulating and superconducting substrates promise to extend reach in dark matter mass and cross section

- Small-detector architectures have potential to reach thermal relic mass limit via DM-e scattering and to probe boson DM in the meV - keV mass range inaccessible to coherent techniques
- Large-detector architectures have potential for background rejection needed to reach neutrino floor

Quantum-limited readout is critical to achieving these goals

Ideas for evading standard quantum limit may provide additional gains

There is a lot of work to do!