
Exploiting detector symmetries for photon visibility

Gianluca Petrillo

SLAC National Accelerator Laboratory, U.S.A.

LArSoft Coordination Meeting, April 9, 2019

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 1 / 16

Current photon visibility and shortcomings

PhotonVisibilityService interfaces LArSoft with a “photon library”, a 3D mapping
describing the fraction of light received by each optical detector, emitted from any point of
the argon volume. In a similar fashion, it may also serve timing information and more.

currently implemented as a (seriously big) table
takes loads of memory, lot of storage
covers a single volume, and the representation in memory is contiguous (not sparse)
ICARUS has two identical cryostats: photon library has to cover a box containing
both, plus a lot of inactive material in between

We felt it.

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 2 / 16

A workaround

I have put together a workaround:
introduced an intermediate mapping layer:
⇒ with the proper transformation, the library can cover only part of the detector volume,

and the service will make up for the rest by symmetry
1) transform detector space into the (voxelised) one of the library to access it
2) transform optical detector numbering to decode the library content

two additional steps required to get visibility of point ~p from optical detector C:
1 (new) transform ~p using symmetry rules, to make it point to a place covered by the

library (~p′)
2 (new) transform the requested channel C into the correct channel C′ in the library
3 let the library convert ~p′ into a voxel, and into the visibility for the requested channel

PhotonVisibilityService internally applies both mappings (e.g.
GetVisibility())
sometimes information for all optical channels is requested; in that case, now return a
special class that lazily applies proper mapping when used (e.g. GetAllVisibilities())

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 3 / 16

How it works for ICARUS

The optical detectors of ICARUS have:
the two cryostats (T300 modules) are nominally identical and completely independent
180 PMT’s per cryostat, 90 behind each of the two anodes (cathode is in the middle)
the library: we map 180 channels from the full active volume inside one cryostat
mappings:

spatial mapping
map the volume of second cryostat into the
first one:

~p on C:0 ~p → ~p
~p on C:1 ~p → ~p −∆~pC

with ∆~pC the difference in position of the two
cryostats

channel mapping
map the channels of the second cryostat to
the first:

~p on C:0 #0÷ 179→ #0÷ 179,
#180÷ 359→ 0.0 (no visibility)

~p on C:1 #0÷ 179→ 0.0 (no visibility),
#180÷ 359→ #0÷ 179

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 4 / 16

How it could work for SBND

SBND!
single cryostat, cathode in the middle, two identical TPCs at the sides
the library: mapping sources from one of the TPCs into all the optical detector
mappings:

spatial mapping
map the volume of second TPC into the first

~p on T:0 use position as is
~p on T:1 mirror the point into T:0

channel mapping
swap the channels of the two TPCs

~p on T:0 use channels as they are
~p on T:1 swap channel numbers

between T:0 and T:1
ideally one could simulate one fourth of a single TPC and use the symmetry to
multiply it eightfold and cover everything
note the “could” in the title: this is just a suggestion
→ and of course it all depends on how symmetric the detector actually is

In principle, this is possible for ICARUS as well (on top of the mapping already described).
G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 5 / 16

How it works for MicroBooNE

I am singling out MicroBooNE for no particular reason, but the point here is:
there are no symmetries to be exploited
an identity mapping can be used
it’s provided, it’s called PhotonMappingIdentityTransformations, and it’s the
default
so nothing to be seen, unless MicroBooNE wants to

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 6 / 16

More information

For future reference, the additional material in this presentation includes:
hints on how to update existing code and configuration
some questions and my answers (short Q&A)

How to implement your own mapping is not described here.
The best starting point is to look how it is done in ICARUS:
icaruscode/Light/LibraryMappingTools.

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 7 / 16

https://cdcvs.fnal.gov/redmine/projects/icaruscode/repository/revisions/master/show/icaruscode/Light/LibraryMappingTools

Summary

I have coded tools to reduce the memory impact of the optical library
test passed: compared with LArSoft v08_14_00, photons from LArG4 are exactly
the same (5 ICARUS events, 10 SBND events)
code is in branches feature/gp_PhotonVisTransformations

→ also provided for dunetpc (update) and icaruscode (custom mapping)
→ nothing needed for ArgoNeuT, LArIAT, SBND and MicroBooNE

requesting to merge it into LArSoft

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 8 / 16

Additional material

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 9 / 16

Updating the code (I)

This is a breaking change. I tried to make it as little breaking as possible:
the return types of some PhotonVisibilityService methods has changed; I
recommend to use the auto no-brainer:

139 //get the visibility vector
140 const float* PointVisibility = pvs.GetAllVisibilities(&xyz_segment[0]);

larana/OpticalDetector/FlashHypothesisCreator.cxx from LArSoft v08_14_00
becomes

301 //get the visibility vector
302 auto const& PointVisibility = pvs.GetAllVisibilities(&xyz_segment[0]);

these return values behave as pointers (→ and better)
they refer to the data, they don’t own it
they support indices: float const v = PointVisibility[opDetID];

they support testing: if (PointVisibility) //...

→ they know how much data: unsigned int const nChannels = PointVisibility.size();

→ they support iteration: for (float v: PointVisibility) //...

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 10 / 16

Updating the code (II)

sometimes the actual type is needed:

301 TF1* ParPropTimeTF1;
302 float const* ReflT0s;

larsim/LArG4/OpFastScintillation.hh from LArSoft v08_14_00
becomes

#include "larsim/PhotonPropagation/PhotonVisibilityTypes.h" // phot::MappedT0s_t
// [...]
phot::MappedFunctions_t ParPropTimeTF1;
phot::MappedT0s_t ReflT0s;

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 11 / 16

Updating the code (III)

Configuration:
specific mappings are implemented as art tools; e.g. for ICARUS:

PhotonVisibilityService: {
...
Mapping: {
tool_type: ICARUSPhotonMappingTransformations

}
}

the tool PhotonMappingIdentityTransformations (provided) is a
pass-through mapping
the tool PhotonMappingIdentityTransformations is selected if no mapping is
configured

This should make the old configuration work seamlessly.

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 12 / 16

Updating the code (IV)

More obscure breaking change is in sim::PhotonVoxelDef.
This is what was relevant for DUNE:

void GetNeighboringVoxelIDs
(const TVector3& v, std::vector<NeiInfo>& ret) const;

filling ret with 8 neighbouring voxels unless the point v is invalid, is replaced by:

template <typename Point>
std::optional<std::array<NeiInfo, 8U>> GetNeighboringVoxelIDs

(Point const& v) const;

Beside templates1, to avoid dynamic allocation, a “optional” STL array is now returned
(phot::PhotonVisibilityService::doGetVisibilityOfOpLib() shows how
to use it).

1Because it’s me after all.
G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 13 / 16

Q&A (I)

Q: Is this the solution?
A: Diego Garcia-Gamez is working on a full parametrization of the visibility. That feels a
better solution, if we can find such a parametrization. But that might be a much harder job
for each experiment.

Q: ... and that will make the work you presented today obsolete?
A: More or less. It is still possible to use this mapping, but once we go analytic we can as
well implement it directly in the analytic library rather than as an intermediate layer.

Q: Additional mapping... is it slower?
A: Yes. And if your module spends all its time querying the library, you might even notice.
Me? I ran 5 ICARUS events through LArG4, taking each 6.72 s (v08_14_00) and 6.77 s
(feature/gp_PhotonVisTransformations). I call it “within fluctuation”, and the slowdown
“negligible”.

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 14 / 16

Q&A (II)

Q: To use this feature will we need a new photon library?
A: Probably; and the tools to make it are not necessarily readily available. The new
library should map only the non-redundant space, only the relevant optical detectors, and
an experiment could even consider to trade the gain of symmetry for a higher mapping
granularity.

Q: Can DUNE far detectors take advantage of this?
A: This feature was not designed with DUNE in mind (see the first slide of this
presentation for hints). Nevertheless, I believe that at least on first approximation, it may
help.
The optical detector mapping will be more complicated when trying to correctly describe
the TPCs at the border.

Q: Can multiple libraries be used? (e.g. a “corner” one and a ”bulk” one)
A: Nope. It’s possible to extend the system though — I haven’t put much thought into it.

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 15 / 16

Q&A (III)

Q: Where is the documentation?
A: These slides are some documentation already. The software infrastructure is
documented in Doxygen, but that will only show how to use the new objects that
PhotonVisibilityService returns.

Q: Where is the code?
A: There are numerous changes, all stored in feature/gp_PhotonVisTransformations

branches, for:
larcoreobj... oh, I introduced a geographical ID for optical detectors too, it’s called
geo::OpDetID!
larcorealg for metaprogramming stuff (and assignation of geo::OpDetID)
lardataalg (new mapping container objects)
larsim (the mappings)
larana (updates only)

Trying to sneak it into LArSoft...

G. Petrillo (SLAC) Photon visibility mapping LArSoft coordination meeting, 9-Apr-2019 16 / 16

	Appendix
	Code updating hints
	Questions and answers

