ArgonCube DUNE ND Workshop May 25-27, 2019, Fermilab

Light Readout System for ArgonCube prototype

Nikolay Anfimov On behalf of JINR and UniBe groups

ArgonCube Module Prototype

- * Size 670x670x1200 mm
- Cathode plane in the center
- LCM/ArCLight ~
 30 cm x 120 cm 4 planes
- Current solution
 LCM/ArCLight = 50/50%.
- * PCB with connectors as cables feedthrough.
- * 48 SiPM for LCM and 48 ArcLight

Clip fasteners for Light Modules (see Knut's talk)

Light readout. LCM vs ArCLight

Both approaches are based on shifting UV light (128 nm) into visible (425 nm) by TPB

- looses PDE for scaling up. PDE ~ 0.1-0.4%

+

+

- Thickness ~ 10 mm

ArCLight Module

Change thickness to **10** mm for prototype + **6x6** SiPM => Increasing light yield

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Light Collection Module

Current LCM's dimensions 100x300x10 mm, SiPM = 6x6 mm²

SiPMs preparation

We have 121 Hamamatsu SiPMs S13360-6025PE (PDE=20%) for prototype

We placed order for 120 SiPMs S13360-6050PE (PDE = 35%)

It would be great to try both SiPMs and compare performance

Light Collection Module

We can make any pins type and arrangement

Arrows point to the attaching holes (not drilled)

CNC Machinery @ JINR

CNC - Milling machine to produce components for LCM

We are going to produce all mechanical components in our lab

Fully automatic CNC-Milling For PCB prototyping and precise components

PCB will be printed, SiPM SMD-mounted at JINR electronics facility or on Outside company

Essential Materials

- BERN already purchase 4 mm WLSplastic bulk and mirror&dichroic films.
- Now BERN is arranging 10 mm WLSplastic order.
- * JINR has prepared 12 LCM already.
- INR placed order to Kurraray for 2 km of WLS fiber.
- * TPB and Bis-MSB already in Dubna.

Fastening LCM

Main concern - bending by the temperature deformations

Cryogenic stand at JINR

Purchase LAr from Kurchatov's Institute

We use open ²³¹Am α -source

Purity of LAr at level 10⁻⁵ - 10⁻⁶, but we can perform relative measurements For LCM and ArCLight both

We can also use Gaseous Argon - easy to handle the tests

SiPM Biasing and Readout

One side biasing (multi-ch PS)

- + Less components higher MTTF+ DC coupling/direct grounding
- Expensive (CAEN A7040AN 100 €/ch)

Both side biasing (1 ch PS + DAC)

- + Easy to manage adjustment
- Complex schematics less MTTF
- AC coupling/decoupled ground (load rate/ background?)

SiPM Biasing and Readout

CAEN

CAEN A7040AN:

- 48 independently controllable High Voltage channels
- Common floating return shared by all channels
- DB37 connector
- Available with positive or negative polarity
- 0 ÷ 100V output voltage
- 1mA maximum output current
- 0.2mV voltage monitor resolution
- 2 nA current monitor resolutionLow Ripple
- Independently programmable for each channel
- Needs VME controller

4900 Euro/each -> 100 Euro/ch

JINR is purchasing 2 modules for prototype -> 96 ch

ASUS Thinker Board (RaspPi-like) + 6 SPI 16ch DAC Boards DC2025:

- LTC2668 12-bit DAC range +/-10V (2.5 mV step)
- $10 \text{ ppm}/{}^{0}\text{C} \rightarrow 0.1 \text{ mV}/{}^{0}\text{C} @ 10\text{V}$
- Custom made 50V 1 ch PS (**100 USD**)
- Custom made software -> good for Slow Control

16 ch unit = 150 USD (chip ~ 40 USD) -> 10 USD/ch (3 USD/ch)

13

LED double long pulses (dT=20 ns)

- Liquid Argon: RiseTime ~ 5 ns, FallTime ~ μs) - long pulse!
- SiPM has huge capacitance ~
 1 nF integrates long pulses
- We cannot resolve two long light pulses within 20 ns!
- Fast neutrons delay ~ 5 ns No way to resolve in the same cell!
- Don't need fast sampling electronics.
- Resolving two neutrino vertices overlap ~ µsec - No problem!

SiPM readout and Trigger

- Spill = $10 \, \mu sec$
- Light pulse ~ few µsec
- Preferable ADC window ~

16 µsec

Front-End electronics (Flash+TDC)

JINR TQDC

- 14-bit @ 125 MS/s (8ns) Buffer of 2048 kSamples = 16 µsec
- HPTDC provides 25 ps time resolution
- Analog inputs on Lemo coaxial connectors
- 16 channels, 1-unit wide 6U VME64 module
- VME64 and Ethernet (up to 10 Gbits)
- Embedded trigger logic fast comparators (250 ps)

Price ~ 150 USD/ch

Front-End electronics (Flash+TDC)

We obtained 2 boards, writing DAQ software, then perform tests with LCM We are planning to purchase 8 pcs (2 spare)

For prototype run we require 9 ports VME crate! (6 ADC, 2 CAEN + 1 Controller)

Front-End electronics (Flash ADC)

Great solution for 2x2 and NearDetector

We need simulate operation processing Data from the Prototype Run with JINR TQDC:

- Apply software bandwidth filter
- Reduce sampling rate
- Reduce Resolution to 10-bits

JINR ADC (ECAL NICA/MPD)

- 10-bit @ 100 MS/s (10 ns) Buffer of 16 kSamples
- Analog inputs on **Diff-pairs** connectors
- 64 channels, 1-unit wide 6U VME64 module, standalone
- VME64 and Ethernet (up to 10 Gbits)

Price ~ 50 USD/ch

Summary for the prototype

- * LCM/ArCLight mixed layout 24/24 modules
- * Individual SiPM biasing (CAEN PS and Custom PS+DAC)
- * Front End = Sampling 125 MHz ADC + TDC (optional)
- * Everything is arranged (prepared) for the prototype RUN: SiPM, essential materials, PS, FE-electronics.
- After the RUN we will decide for Light Readout layout,
 Power supply, FE-Electronics, SIPM-type to prepare 2x2
 Module's RUN @ Fermilab.