

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

ArgonCube Overview

Roman Berner | roman.berner@lhep.unibe.ch DUNE Near Detector Workshop, May 25th 2019, Fermilab Segment detector volume into a number of self-contained TPC modules sharing a common cryostat

- \rightarrow short drift distances
- → contained scintillation light
- → unambiguous charge readout

Cross section of DUNE LAr ND (beam direction)

Goal for ArgonCube DUNE-ND

150 t modular LAr TPC (active volume: 5 x 7 x 3 m³)

Top view of DUNE LAr ND

Cut-away illustration of early concept module

ArgonCube 2x2 for ProtoDUNE-ND

2.4 t modular LAr TPC (active volume: $1.2 \times 1.2 \times 1.2 \text{ m}^3$) \rightarrow will be placed on-axis in NuMI

2019(March Bern N N ArgonCube

ArgonCube Module

Cut-away illustration of early concept module G10 module structure

Resistive Shell Prototype TPC

Replace traditional field-cage by carbon-loaded Kapton field-shell

- Minimise dense material and maximise active volume
- Slowdown power dissipation in case of HV breakdown
- Continuous field shaping
- Reduced possible points of failure

Bern Prototype Instruments 2019, 3(2), 28

May 25th, 2019 Dune Collaboration Meeting | Fermilab

Resistive Shell and HV Feedthrough

Laminate carbon-impregnated Kapton* foil directly to the G10 walls

HV feedthrough design same as in nEXO and LZ

SLAC responsible for lamination and HV feedthrough → see Hiro's talk

Pixelated Charge Readout

LBNL pixel PCB with 28 LArPix chips and 832 pixels. Pixel ASICs mounted directly on R/O plane.

To achieve an unambiguous charge R/O

- Cryogenic amplification and digitisation of each pixel
- Digital multiplexing and low data-rates: $\sim 0.1 \text{ Mb/s/m}^2$
- Achieved using bespoke pixel ASIC LBNL's LArPix

(2018)

13

JINST

Light Readout

Compact dielectric light R/O capable of being deployed within the TPC

- Two functionally identical, complementary, SiPM-based systems sharing the same R/O electronics
- Two SiPMs per 10 cm length (LCM 10 cm, ArCLight 30 cm broad)
- SiPM double-side biasing (1 PS HV + Multichannel ADC)

Fibre based Light Collection Module (LCM) from JINR, Dubna (left) and WLS plastic + dichroic reflector based ArCLight from LHEP, Bern (right)

May 25th, 2019 Dune Collaboration Meeting | Fermilab

Purity Module Experiment

Purity module instrumented with a 60 cm long drift TPC

February / March 2019: Operated 2x2 cryostat for 3 weeks

- \rightarrow several extractions / insertions
- → gained better understanding of cryostat properties (e.g. heat-losses)
- → found many weak points and possible points of improvement

Findings from Purity Module Test

Thanks to all collaborators for their contributions to the success of the measurement campaign!

- High noise levels from pump VFD
 - \rightarrow electrically isolate pump and shield lines
 - \rightarrow move pump further away
- Hard to maintain purity using liquid check-valves for level/pressure-control
 - → developed cryogenic control-valves
 - \rightarrow pressure regulation in gas phase
 - \rightarrow liquid refill from purified source
- Panel-wall design had many leak paths
 - → improved module structure
- Contamination of Cu dust from filters
 - → redesigning filters

Improved Module Structure

- Two 'half detectors' and a field shell hanging from the insulating pillow at the top flange
- Hermetic/sealed G10 'bucket'

ArgonCube 2x2 Demonstrator

- Vacuum insulated cryostat
- 4 modules, 8 TPCs
- Active volume: $1.2 \times 1.2 \times 1.2 \text{ m}^3$
- Active mass: 2.4 t
- Drift length: 30 cm (1 kV/cm)
- Number of pixels: 360k
- Number of SiPMs: 384

ArgonCube 2x2 Demonstrator

- Geometry produced using NDGGD
- Available to use in LArSoft (here)
 → see Kazu's talk
- Will be updated when design is finalised

Credits: P. Koller, H. Sullivan

ProtoDUNE-ND

2x2 will be moved to Fermilab, on-axis in NuMI beam in the MINOS-ND hall, see DocDB 12571 Existing detector components will form the ProtoDUNE-ND Tracker \rightarrow see Patrick's talk

ProtoDUNE-ND in NuMI Beam

Expected interaction rates in 2x2 placed in the MINOS-ND hall

DUNE-ND Complex

ArgonCube in DUNE-ND

TPC dimensions:

- \rightarrow Rayleigh scattering length (66 cm)
- → e^- diffusion (13 cm²/s @ 1 kV/cm) 0.5 (wide) x 1 (long) x 3 (tall) m³

Detector dimensions optimised:

- → for hadronic shower containment
 4 (wide) x 3 (tall) x 5 (long) m³
- → to mitigate side-muon tagger
 4 m → 7 m (wide)

May 25th, 2019 Dune Collaboration Meeting | Fermilab

ArgonCube in DUNE-ND

TPC dimensions:

- \rightarrow Rayleigh scattering length (66 cm)
- → e^- diffusion (13 cm²/s @ 1 kV/cm) 0.5 (wide) x 1 (long) x 3 (tall) m³

Detector dimensions optimised:

- → for hadronic shower containment
 4 (wide) x 3 (tall) x 5 (long) m³
- → to mitigate side-muon tagger
 4 m → 7 m (wide)

see DocDB 13133

ArgonCube in DUNE-ND

TPC dimensions:

- \rightarrow Rayleigh scattering length (66 cm)
- → e^- diffusion (13 cm²/s @ 1 kV/cm) 0.5 (wide) x 1 (long) x 3 (tall) m³

Detector dimensions optimised:

- → for hadronic shower containment 4 (wide) x 3 (tall) x 5 (long) m^3
- → to mitigate side-muon tagger
 4 m → 7 m (wide)

see DocDB 13133

Timeline of the ArgonCube 2x2 Demonstrator

- July 19:
- July 19:
- August 19:
- Fall 19:
- Winter 19:
- Spring 20:

Bern: Tests of module cryogenics and PLC \rightarrow see later talk **SLAC:** Finalise TPC construction technique LBNL: Testing of pixel tiles, begin production FNAL: Cryogenic review 2x2 & MINOS-ND hall Component delivery to Bern for QAQC Bern: Module construction and initial cosmics run **Rochester:** Electronics installation and commissioning 2x2 shipping to FNAL Collaboration: 2x2 assembly and installation at FNAL • Summer 20: Collaboration: 2x2 commissioning

• Fall/Winter 20: **Collaboration**: Detector operation

Thank You

ArgonCube Collaboration Meeting in Bern (December 8th to 10th) Coinciding with module construction Registration: here

