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○ Implement a common Geant4 driver (new largeant)

● Develop detector response in a sub-detector repository 
○ dune-nd-mpd-sim, dune-nd-lar-sim, etc…
○ Driver code can be in each repository OR dune-nd-sim.

● Comments

○ Major work: a common Geant4 driver code
○ Minor work: code modularization in each sub-detector
○ GArSoft: it looks like an old LArSoft branch-off before 

modularization of libraries (i.e. not a brand-new 
development from art). It looks better to modularize libs 
instead of keep as a separate software. Challenge might be 
Geometry, but our recent development on generalizing 
readout element type might solve this issue.
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Reconstruction … currently all outside LArSoft
● Probably no need to merge, but if useful, we should share
● Libraries (HPC-ready, either GPU or KNL, also runs on CPU)

○ MAGMA (+sparsehash-dev) for linear algebra, CUDA for GPU 
kernels, AVX-512 (optional) for KNL kernels, Open-MP for 
many-core multi-threading, MPI+Horovod for data broadcasting, 
pytorch/sci-kit/OpenCV for ML/computer-vision algorithms

● Eco-system
○ Github (Free and superior to redmine in many aspect if not all)
○ Travis-CI (Free) 
○ Docker/Singularity hub with build auto-trigger (Free)


