
LAr Software
Ideas for Merging

Kazu @ SLAC



Simulation workflow

● Event generation

● Particle tracking 

● Detector response

Neutrino-Nucleus 
interactions in the detector 
and surrounding materials

Tracking of generated and 
secondary particles in the detector 

and surrounding materials

Compute charge/light production, 
propagate to sensitive detector 

elements, produce readout output



Simulation workflow

● Event generation

● Particle tracking 

● Detector response

No need to be merged. But better to have 
a stand-alone, shared event generator 
library. Also better to have a stand-alone, 
shared data product library (this part is 
reused by particle tracking simulation).

Neutrino-Nucleus 
interactions in the detector 
and surrounding materials



Simulation workflow

● Event generation

● Particle tracking 

● Detector response

No need, but better to be merged. 
Best: a stand-alone, shared library. Also 
better to have a stand-alone. Better: 
shared data product library (this part is 
reused by particle tracking simulation).

Should be merged. Particle tracking 
and energy deposition. Store particle 
type, dE and dX. Need: unified GDML, 
common Physics List, common version 
underlying software (ROOT, GeGeD-ND, 
Geant4). Better: common input & 
output data product library.

Tracking of generated and 
secondary particles in the detector 

and surrounding materials



Simulation workflow

● Event generation

● Particle tracking 

● Detector response

Should be merged. Particle tracking 
and energy deposition. Store particle 
type, dE and dX. Need: unified GDML, 
common Physics List, common version 
underlying software (ROOT, GeGeD-ND, 
Geant4). Better: common input & 
output data product library.

No need to be merged.

No need, but better to be merged. 
Best: a stand-alone, shared library. Also 
better to have a stand-alone. Better: 
shared data product library (this part is 
reused by particle tracking simulation).

Compute charge/light production, 
propagate to sensitive detector 

elements, produce readout output



No need to be merged.

Simulation workflow

● Event generation

● Particle tracking 

● Detector response

Should be merged. Particle tracking 
and energy deposition. Store particle 
type, dE and dX. Need: unified GDML, 
common Physics List, common version 
underlying software (ROOT, GeGeD-ND, 
Geant4). Better: common input & 
output data product library.

No need, but better to be merged. 
Best: a stand-alone, shared library. Also 
better to have a stand-alone. Better: 
shared data product library (this part is 
reused by particle tracking simulation).

Extra Thoughts
Algorithms and data products 
should be implemented in a 
separate library than event 
processing framework (i.e. art) 
so that implementation can be 
done outside the framework 
(e.g. ArgonBox, bare Geant4)



Simulation workflow

● Event generation

● Particle tracking 

● Detector response

No need to be merged.

No need, but better to be merged. 
Best: a stand-alone, shared library. Also 
better to have a stand-alone. Better: 
shared data product library (this part is 
reused by particle tracking simulation).

Should be merged. Particle tracking 
and energy deposition. Store particle 
type, dE and dX. Need: unified GDML, 
common Physics List, common version 
underlying software (ROOT, GeGeD-ND, 
Geant4). Better: common input & 
output data product library. 

Extra Thoughts
Algorithms and data products 
should be implemented in a 
separate library than event 
processing framework (i.e. art) 
so that implementation can be 
done outside the framework 
(e.g. ArgonBox, bare Geant4)

A solution: combined Geatn4 
driver with modularized algorithm 
and data product libraries.



No need to be merged.

Simulation workflow

● Event generation

● Particle tracking 

● Detector response

Should be merged. Particle tracking 
and energy deposition. Store particle 
type, dE and dX. Need: unified GDML, 
common Physics List, common version 
underlying software (ROOT, GeGeD-ND, 
Geant4). Better: common input & 
output data product library.

No need, but better to be merged. 
Best: a stand-alone, shared library. Also 
better to have a stand-alone. Better: 
shared data product library (this part is 
reused by particle tracking simulation).

Extra Thoughts
Algorithms and data products 
should be implemented in a 
separate library than event 
processing framework (i.e. art) 
so that implementation can be 
done outside the framework 
(e.g. ArgonBox, bare Geant4)

A solution: combined Geatn4 
driver with modularized algorithm 
and data product libraries.



Practical Implementation?
● Start a place holder dune-nd-sim repository

○ Implement a common Geant4 driver (new largeant)



Practical Implementation?
● Start a place holder dune-nd-sim repository

○ Implement a common Geant4 driver (new largeant)

● Develop detector response in a sub-detector repository 
○ dune-nd-mpd-sim, dune-nd-lar-sim, etc…
○ Driver code can be in each repository OR dune-nd-sim.



Practical Implementation?
● Start a place holder dune-nd-sim repository

○ Implement a common Geant4 driver (new largeant)

● Develop detector response in a sub-detector repository 
○ dune-nd-mpd-sim, dune-nd-lar-sim, etc…
○ Driver code can be in each repository OR dune-nd-sim.

● Comments

○ Major work: a common Geant4 driver code
○ Minor work: code modularization in each sub-detector



Practical Implementation?
● Start a place holder dune-nd-sim repository

○ Implement a common Geant4 driver (new largeant)

● Develop detector response in a sub-detector repository 
○ dune-nd-mpd-sim, dune-nd-lar-sim, etc…
○ Driver code can be in each repository OR dune-nd-sim.

● Comments

○ Major work: a common Geant4 driver code
○ Minor work: code modularization in each sub-detector
○ GArSoft: it looks like an old LArSoft branch-off before 

modularization of libraries (i.e. not a brand-new 
development from art). It looks better to modularize libs 
instead of keep as a separate software. Challenge might be 
Geometry, but our recent development on generalizing 
readout element type might solve this issue.



Simulation Eco-system
● Redmine for code repository
● Software distribution

○ CVMFS or container (Singularity/Docker) 

● Jenkins build + release process (human needed)



Simulation Eco-system
● Redmine for code repository
● Software distribution

○ CVMFS or container (Singularity/Docker) 

● Jenkins build + release process (human needed)

Reconstruction … currently all outside LArSoft
● Probably no need to merge, but if useful, we should share
● Libraries (HPC-ready, either GPU or KNL, also runs on CPU)

○ MAGMA (+sparsehash-dev) for linear algebra, CUDA for GPU 
kernels, AVX-512 (optional) for KNL kernels, Open-MP for 
many-core multi-threading, MPI+Horovod for data broadcasting, 
pytorch/sci-kit/OpenCV for ML/computer-vision algorithms

● Eco-system
○ Github (Free and superior to redmine in many aspect if not all)
○ Travis-CI (Free) 
○ Docker/Singularity hub with build auto-trigger (Free)


