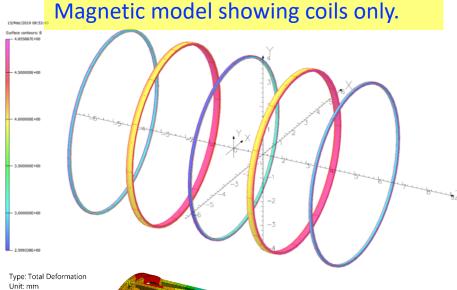
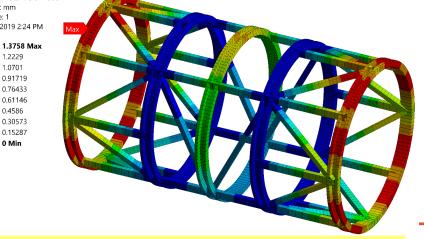
MPD Magnet designs

A. Bross NDWS May 26th, 2019

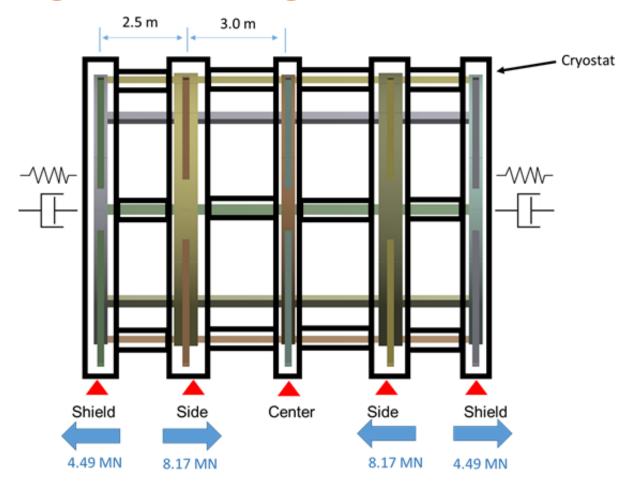


Magnet comments


- 22. 1-30 29 It's not clear to me how the magnet distinguishes pions and muons of the same momentum?
 - Correct. Need ECAL plus (possibly) $\boldsymbol{\mu}$ tagger. Future optimization study
- 32. 1-38: Electromagnet vs. superconducting magnet? Same arguments in terms of cost/running cost against electromagnet are applicable for the 3DST magnet. Also background coming from the iron. Since we continue to hear noise about the KLOE magnet being used, you may want to comment on the need to reduce the magnet's mass.

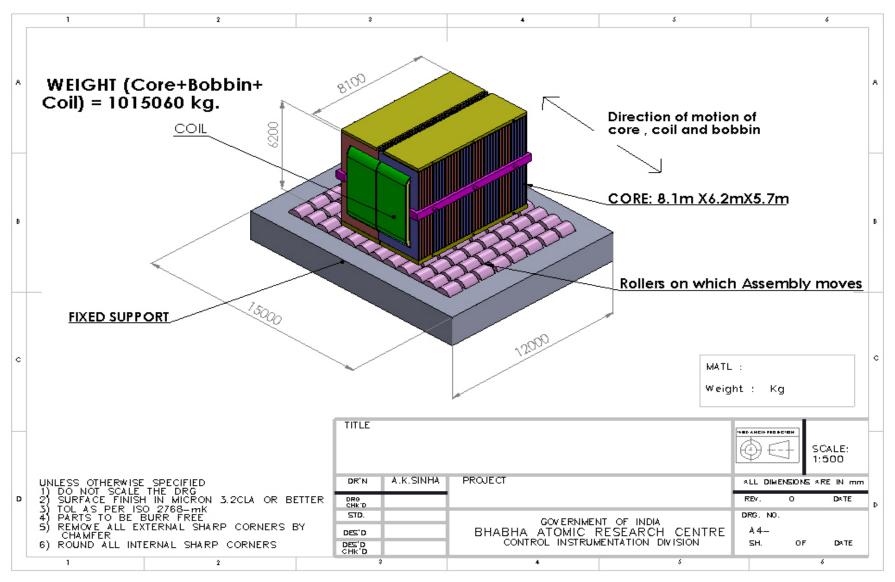
Magnet design: 3-coil Helmhotz with bucking coils

- Central field = 0.5T
- Side coils at 2.5 m, shielding coils placed at 5 m from the magnet center in Z.
- All coils have the same inner radius 3.5 m and outer radius 3.59 m.
- Center and shielding coils are identical.
- INFN looking into SC dipole design
- Our BARC colleagues have looked at NC design optimization
 - Still very high power– 4MW

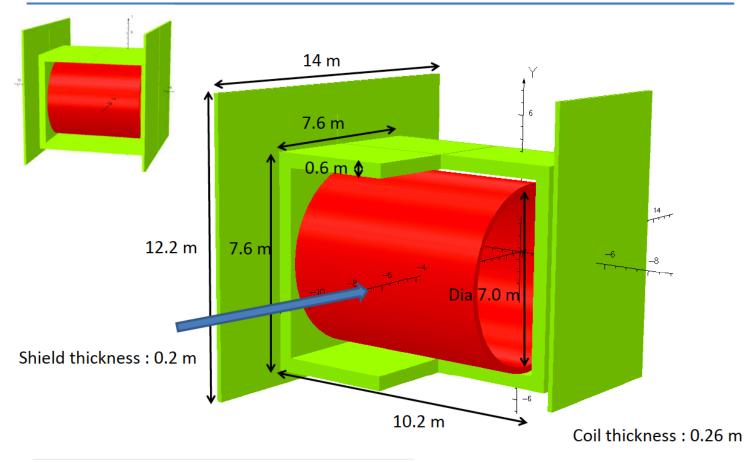


Mechanical support structure analysis

1.0701


SC Magnet design evolution

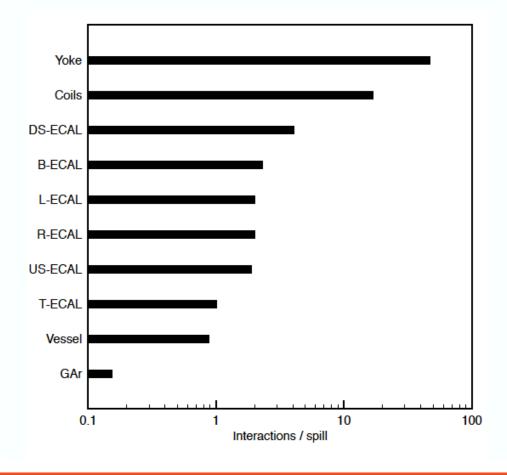
NC magnet design studies


DEEP UNDERGROUND NEUTRINO EXPERIMENT

Particulars	Units	Value
Single hydraulic circuit (Turns, length)	meter	16,480
Total number of hydraulic circuits in parallel	-	86
Power Loss per hydraulic circuit	kW	28.25
Cooling Flow rate	LPM	8.968
Pressure drop in single hydraulic circuit	bar	8.58
Water velocity	m/s	1.15
Temperature difference between inlet and outlet header for single hydraulic circuit	°K	45
Cooling Surface area	m^2	19.59
Reynolds Number	-	21900
Prandtl number	-	4.536
Nusselt Number	-	112.93
Heat Flux	kW/m^2	1.44
Temperature difference between Copper surface and Bulk water temperature	°K	0.26
Bulk water temperature (taken ref inlet water temperature as 20)	°C	42.5
Heat Transfer Coefficient	VV/IVI ² /~IX	3436

5/26/

Magnet Geometry (3/4 view)


NC magnet design update:

SN	Parameter	Value (Copper)	Value (Copper Modified)	Unit
1.	Coils Type	Double Pancake	Double Pancake	-
2.	Number of Double pancakes	52 10 turns per pan cake	52 6 turns per pan cake	-
3.	Copper Coil Thickness	0.500	0.260	-
4.	Conductor Dimensions	80 X 80 Hole dia : 36	80 X 80 Hole dia : 36	mm
5.	MMF	4,600,000	3,660,000	At
6.	Current density	1.65	2.18	A/mm sq
7.	Power dissipation per pancake	57.5	63	kW
8.	Total Power dissipation	3	3.28	MW
9.	Chilling power consumption	1	1.10	MW
10.	Pumping motor power consumption (gross estimate)	0.25	0.20	MW
11.	Water velocity	2.5	2.5	m/s
12.	Total pressure drop	5	4	bar
13.	Water temperature rise	5.38	5.71	С
14	Weight per pancake coil	11	6.7	MT
1 5	Magnet Coil OD	8	7.52	Meter
16	Total power dissipation	~4.25	~4.5	MW

~\$1.5M/yr operating costs

Backgrounds

800t Fe

SC design: 100t AL

