CALICE-style ND ECAL Detector Concept Status & R&D Questions

Frank Simon **Max-Planck-Institute for Physics**

DUNE Near Detector Workshop Fermilab, May 2019

(Werner-Heisenberg-Institut)

Outline

- Global detector layout
- Main performance goals
- Technology choices & options
- Cost Drivers
- R&D plans

CALICE-style ND ECAL - DUNE NDWS, May 2019

The Global Layout

Driven by the Dimensions of the HPgTPC

- *Dimensions* of the HPTPC fiducial volume
 - Radius: 2.7 m
 - Length: 5.5 m
- Need a calorimeter geometry that is fits the intrinsically planar geometry of the highly granular sampling structures, and matches the cylindrical HPTPC structure & pressure vessel: An octagonal structure

Dimensions:

- Octagon side length: 2.25 m
- Barrel inner surface: ~100 m²
- Cap inner surface: ~50 m²

Magnetic field:

- parallel to drift direction (= cylinder axis)
- perpendicular to beam direction

Frank Simon (fsimon@mpp.mpg.de)

Main Performance Goals

Must-haves, ideas & aspirations

- Electromagnetic resolution: 6 %- 8% / Sqrt(E [GeV])
 - Drives sampling structure: Thin absorbers!
- π^0 reconstruction: Requires shower separation, position and angular resolution
 - Motivates highly granular readout

CALICE-style ND ECAL - DUNE NDWS, May 2019

Main Performance Goals

Must-haves, ideas & aspirations

- Electromagnetic resolution: 6 %- 8% / Sqrt(E [GeV])
 - Drives sampling structure: Thin absorbers!
- π^0 reconstruction: Requires shower separation, position and angular resolution
 - Motivates highly granular readout

CALICE-style ND ECAL - DUNE NDWS, May 2019

- Neutron reconstruction a potential gamechanger [still needs to be established in realistic environments!]
 - Requires timing on the few 100 ps level to enable energy measurement via time-of-flight

Refining the Design

Accounting for environment and constraints

- Things tend to go forward do not need the same granularity, and same depth / resolution everywhere
 - Obviously something that requires understanding and optimisation - in progress

Defining two regions:

- DownStream (DS): Forward Region
- UpStream (US): Side & backward region (including caps)

Possibly variable longitudinal segmentation:

- thin layers in front to enable good energy resolution for low-energy photons
- thicker layers in the rear to ensure sufficient containment with a compact detector

Technology Choices & Options: Baseline

(Partially) based on CALICE AHCAL

• High granularity readout planes: scintillator tiles

CALICE-style ND ECAL - DUNE NDWS, May 2019

Scintillator tiles

one SiPM per tile

ipcb

Scinhillator Strips

crossed strips in each layer, read out on both sides (strips span full length of segment)

The Current Detector Model

What is in the Document - not what will get built

Active elements:

- *high granularity*: 25 x 25 mm² tiles, 5 mm thick
- low granularity: 40 mm wide, 5 mm thick bars over full module length, crossed in alternating layers

CALICE-style ND ECAL - DUNE NDWS, May 2019

low granularity layers: alternating orthogonal bars <u>Man</u>

- high granularity layers: tiles ann
- "Downstream" segment

- 80 layers, first 8 high granularity
- Upstream layout [5 side and upstream] segments, endcaps]:
 - 60 layers, first 6 high granularity

A closer look

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

CALICE-style ND ECAL - DUNE NDWS, May 2019

Physics Prototype

Frank Simon (fsimon@mpp.mpg.de)

A closer look

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

CALICE-style ND ECAL - DUNE NDWS, May 2019

Physics Prototype

Direct coupling of tiles and photon sensors

A closer look

• From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

CALICE-style ND ECAL - DUNE NDWS, May 2019

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

A closer look

• From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

CALICE-style ND ECAL - DUNE NDWS, May 2019

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

A closer look

- Mass production for a new 0.5 m³,
 22k channel prototype
 - 24k tiles produced & wrapped

CALICE-style ND ECAL - DUNE NDWS, May 2019

injection molding of PS based scintillator tiles

A closer look

- Mass production for a new 0.5 m³, 22k channel prototype
 - 24k tiles produced & wrapped

semi-automatic wrapping of scintillator tiles

CALICE-style ND ECAL - DUNE NDWS, May 2019

injection molding of PS based scintillator tiles

10/2017 - 01/2018

A closer look

- Mass production for a new 0.5 m³,
 22k channel prototype
 - 24k tiles produced & wrapped

automatic placement of tiles on electronics board (HBU), fully assembled with SiPMs and ASICs

11/2017 - 02/2018

semi-automatic wrapping of scintillator tiles

CALICE-style ND ECAL - DUNE NDWS, May 2019

injection molding of PS based scintillator tiles

10/2017 - 01/2018

A closer look

• A multi-step QA procedure

CALICE-style ND ECAL - DUNE NDWS, May 2019

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria all batches accepted

A closer look

• A multi-step QA procedure

CALICE-style ND ECAL - DUNE NDWS, May 2019

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria all batches accepted

test of all ASICs (~80-90% yield) test of all assembled boards using built-in LEDs

Frank Simon (fsimon@mpp.mpg.de)

A closer look

• A multi-step QA procedure

test and calibration of all channels with cosmics

CALICE-style ND ECAL - DUNE NDWS, May 2019

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria all batches accepted

test of all ASICs (~80-90% yield) test of all assembled boards using built-in LEDs

Frank Simon (fsimon@mpp.mpg.de)

A closer look

• A multi-step QA procedure

integration of layers & interfaces, test in beam at DESY

test and calibration of all channels with cosmics

CALICE-style ND ECAL - DUNE NDWS, May 2019

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria all batches accepted

test of all ASICs (~80-90% yield) test of all assembled boards using built-in LEDs

Frank Simon (fsimon@mpp.mpg.de)

A closer look

• In May and June 2018: Test beam at CERN SPS - the smoothest CALICE test beams ever.

CALICE-style ND ECAL - DUNE NDWS, May 2019

A closer look

• In May and June 2018: Test beam at CERN SPS - the smoothest CALICE test beams ever.

Analysis ongoing - first results soon

CALICE-style ND ECAL - DUNE NDWS, May 2019

muon track

SiPM-on-Tile for the ND ECAL

Understanding Impact of Tile imperfections

• Response of scintillator tiles not perfectly uniform

Misalignment generates a "dipole" in the response: global asymmetry in direction of misalignment 2% asymmetry for 175 µm offset Expect 100 µm easily achievable

- Typical variations 5 10% over tile surface, large fraction within a few % of mean
- Assembly tolerances leading to misalignment between SiPM and tile can lead to increased non-uniformity

Frank Simon (fsimon@mpp.mpg.de)

SiPM-on-Tile for the ND ECAL

Understanding Impact of Tile imperfections

- effects of ~ 100 μ m SiPM / tile misalignment
 - at present all layers the same: expected to be more damaging than random alignment
 - random orientation within each layer also studied

Bottom line: By no means a show-stopper - SiPM-on-tile useable also for high-resolution ECAL \Rightarrow Next step: Understand impact of non-uniform material distribution induced by ASICs inside layers...

CALICE-style ND ECAL - DUNE NDWS, May 2019

• Simulations of an "infinitely thick" tile-only ECAL with realistic non-uniformities implemented, including

typically ~5% degradation, worse for near-normal incidence at high energy

200 µm dead zone around each tile adds a comparable degradation

Rethinking the Strip Solution

A possible alternative - capitalizing on timing

- Scintillator strips with embedded wavelength-shifting fibers a "standard technology", but:
 - Fibers have a negative impact on timing
 - Fibers are a relevant cost driver

Rethinking the Strip Solution

A possible alternative - capitalizing on timing

- Scintillator strips with embedded wavelength-shifting fibers a "standard technology", but:
 - Fibers have a negative impact on timing
 - Fibers are a relevant cost driver
- \Rightarrow Consider strips with direct readout at both ends position resolution within strip via timing
 - May require a larger SiPM for increased light yield: Offsets cost advantage of eliminating fiber
 - Requires highly transparent scintillator, possibly shorter strips for sufficiently high and uniform light yield

CALICE-style ND ECAL - DUNE NDWS, May 2019

Profit from earlier studies of direct side coupling at MPP

Without concrete numbers - work in progress

- Based on the current design presented by Eldwan (8 HG, 72 LG layers DS, 6 HG, 54 LG layers US)
 - Results in ~3.3 M channels, ~ 90% in the HG elements
 - Cost estimates based on CALICE AHCAL, CMS HGCAL, Belle II KLM,...
- Size matters:
 - ~ 35 m^3 absorber (when using Cu)
 - ~ 85 m³ scintillator
 - ~ 400 km fibers
 - ~ 1900 m² PCB for HG layers

- (also remarked by LBNC)
- \Rightarrow Have to find an optimal working point in terms of performance, feasibility and "technological interest"

CALICE-style ND ECAL - DUNE NDWS, May 2019

• Channel count the main cost driver - clearly need to understand how much is needed / can be justified

Zooming in on scaling expectations

CALICE-style ND ECAL - DUNE NDWS, May 2019

Frank Simon (fsimon@mpp.mpg.de)

Zooming in on scaling expectations

CALICE-style ND ECAL - DUNE NDWS, May 2019

Zooming in on scaling expectations

CALICE-style ND ECAL - DUNE NDWS, May 2019

Zooming in on scaling expectations

CALICE-style ND ECAL - DUNE NDWS, May 2019

material costs + machining - driven by detector size

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

23 %

5 %

7 %

15 %

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be eaten up by increases in SiPM size to ensure sufficient signal & good timing

Zooming in on scaling expectations

CALICE-style ND ECAL - DUNE NDWS, May 2019

material costs + machining - driven by detector size

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

23 %

5 %

7 %

15 %

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be eaten up by increases in SiPM size to ensure sufficient signal & good timing

Zooming in on scaling expectations

CALICE-style ND ECAL - DUNE NDWS, May 2019

material costs + machining - driven by detector size

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

23 %

5 %

7 %

15 %

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be eaten up by increases in SiPM size to ensure sufficient signal & good timing

Zooming in on scaling expectations

Interfaces (data collection, calibration, control) - at present driven by number of layers - significant savings possible for non-HG layers by grouping layers

PCB for HG elements driven by area (= number of layers) of HG elements

ASIC + associated costs driven by channel count + cost pedestal

CALICE-style ND ECAL - DUNE NDWS, May 2019

material costs + machining - driven by detector size

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

23 %

5 %

7 %

15 %

30 %

15 %

5 %

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be eaten up by increases in SiPM size to ensure sufficient signal & good timing

Upcoming R&D activities

The path forward

- Understand perspectives for key goals (including neutrons!) in realistic background environment • Further understand / develop reconstruction/ performance of all relevant objects • One example: "Timing-assisted π^0 reconstruction" also: general use of timing ECAL in particle association In first MPP studies: E2 direction + energy of cluster (challenging for low energies!) HP-TPC volume - Inconsistert with few 100 ps timing: St2 may improve π^0 localization => \$t_2-\$t_1=t_2-t_1 61 81 π HP-TPL St, volume

- On the hardware side:
 - Start exploring strip options

• ...

• Possibly investigate boron-doped scintillators as a possibility to boost low-energy neutron sensitivity

Conclusions

Well, not really

- We do have a concept for an ND ECAL
- The technology is well established

Conclusions

Well, not really

- We do have a concept for an ND ECAL
- The technology is well established

But:

- Need to understand what features are actually needed to achieve the needed performance
- Need to understand the which aspects of the goals are achievable in a realistic background environment
- Develop reconstruction to get fully realistic performance estimates
- Perform hardware R&D to identify optimal (performance, cost) technological solutions

Conclusions

Well, not really

- We do have a concept for an ND ECAL
- The technology is well established

But:

- Need to understand what features are actually needed to achieve the needed performance
- Need to understand the which aspects of the goals are achievable in a realistic background environment
- Develop reconstruction to get fully realistic performance estimates
- Perform hardware R&D to identify optimal (performance, cost) technological solutions
- And, last but not least: Need to get the ECAL on the real axis

