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LBL Sensitivity Analysis (TDR) 
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Simulated Inputs 
•  Beam line designed using 

genetic algorithm to optimize 
CPV sensitivity and 
engineering input 
•  Flux prediction from Geant4 

simulation 
•  Neutrino interactions are 

simulated with GENIE version 
2.12.10, with default physics 
list except for Valencia 2p2h 
model 

•  ND MC samples use GEANT4 
and parameterized 
reconstruction 

•  FD MC samples use LArSoft 
full simulation, reconstruction, 
and event selection 
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Systematics 
•  Flux systematics included using primary component 

analysis of covariance matrix 
•  Interaction systematics use DUNEInt package 

•  Implementation of interaction model & uncertainties developed by 
neutrino interaction experts (D.I.R.T.) 

•  Makes extensive use of GENIE’s reweighting framework 
•  Supports kinematic shifts in addition to reweighting 

•  Adds additional freedom inspired by lack of measurements on 
argon and informed by modeling uncertainties in running 
experiments  

• Detector uncertainties defined using expectation of post-
calibration detector performance 
•  FD uncertainties: next slide 
•  ND detector uncertainties implemented with covariance matrix 
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FD Detector Uncertainties 
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Particle  
Type 

p0  
(constant) 

p1  
(square root) 

p2  
(inverse square) 

All  
(charge calibration) 

2% 2% 2% 

µ (range) 2% 2% 2% 

µ (curvature) 1% 1% 1% 

p, π± 5% 5% 5% 

e, γ, π0 2.5% 2.5% 2.5% 

n (visible) 20% 30% 30% 

•  Energy scale uncertainty: E → Erec(p0 + p1√Erec + p2/√Erec)  

•  Energy resolution uncertainty: 
•  Resolution is built in to MC sim/reco – no specific smearing applied 
•  Uncertainty on resolution: 2% (50% for neutrons) 

•  Fiducial volume uncertainty: 
•  1% separately for νe and νµ

•  Event selection uncertainty: 
•  Vary selection criteria 



Staging Scenario 

• Start of beam run: 
•  Two FD modules (20 kt, fiducial, total) 
•  1.2 MW beam power 

• After one year: 
•   Add one FD module (30 kt, fiducial, total) 

• After three years: 
•  Add one FD module (40 kt, fiducial, total) 

• After six years: 
•  Upgrade to 2.4 MW beam power 
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No attempt at realistic run plan regarding neutrino-antineutrino running. 
All exposures assume equal running in neutrino and antineutrino mode. 

(Same as 2017 analysis) 



NuFIT 4.0 
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NuFIT 4.0 
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RESULTS 
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Appearance Spectra 
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~1100 signal events 

Neutrino Mode: 3.5 years Antineutrino Mode: 3.5 years 

~300 signal events 



Disappearance Spectra 
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~6200 signal events 

Neutrino Mode: 3.5 years Antineutrino Mode: 3.5 years 

~2300 signal events 



δCP & CP Violation 
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Resolution CP Violation 



MH & Octant Sensitivity 
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Mass Ordering Octant 



Sensitivity Over Time 
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Also have these plots as a function of exposure in kt-MW-years. 

CP Violation Mass Ordering 



Sensitivity Over Time 
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Also have resolutions as a function of exposure for sin2(2θ23) and Δm2
32 

δCP Resolution θ13 Resolution 

Reactor 
uncertainty 



2D Resolutions 
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sin22θ13 vs  δCP sin2θ23 vs  δCP 



2D Resolutions 
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sin2θ23 vs  δCP 
(no θ13 penalty) 

sin2θ23 vs  δCP 
(multiple true values) 



Milestones 
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Milestone 
(sin2θ23 = 0.580) 

Exposure 
(staged years) 

5s mass ordering 
(100% of δCP values) 

2 

5σ CP Violation 
(dCP = -π/2) 

7 

5σ CP Violation 
(50% of δCP values) 

11 

sin22θ13 resolution 
0.004 

17 



BIAS STUDIES 
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Bias Study: NuWro 
• Use BDT to reweight GENIE→NuWro in a space of 18 

kinematic variables 
• Separate BDT for each flux at near and far detectors 
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Bias Study: NuWro 
•  FD-only fit appears fine, but result is biased! 

 
 
•  ND-FD fit has χ2 of ~11000! With a ND we would not miss this 

bias. For an FD-only result, we would have to take this bias as 
a systematic uncertainty.  
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Fit χ2 ~ 10 

Bias for 68% of 
δCP values is ≤18∘ 

FHC νµ RHC νµ

FHC νe RHC νe 

Bias depends on osc. pars – 
this is an example value of θ23 



Bias Study: NuWro 
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Example of additional systematic required if ND were not 
present to validate the neutrino interaction model 



Systematics from Bias 

• NuWro re-weighting study is just an example of one way 
our interaction model could be inadequate 

•  In a real FD-only analysis, there would be a multiplicity of 
potential biases that we would have to consider in 
determining a systematic uncertainty 
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Systematics from Bias 

• NuWro re-weighting study is just an example of one way 
our interaction model could be inadequate 

•  In a real FD-only analysis, there would be a multiplicity of 
potential biases that we would have to consider in 
determining a systematic uncertainty 
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Bias Study: Energy Bias 
•  20% of proton energy is 

removed and added to 
(largely invisible) neutrons 
•  Significant modification to 

relationship between 
reconstructed and true energy 

•  An artificial but plausible 
example of a way in which the 
interaction model could be off  

•  Use BDT to adjust model 
parameters such that on-
axis ND reconstructed 
distributions agree with the 
nominal sample 
•  6 variables: lepton energy, 

energy deposit from protons, 
charged pions, neutral pions, 
Erec, and yrec 
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Nominal 
Shifted 

Fake Data 
 



Δm2
32 vs sin2θ23 

Bias Study: Energy Bias 

•  Previous studies showed a bias in δCP (other oscillation parameters were fixed) 
•  In the full DUNE fitting framework, this particular bias is largely absorbed by a 

bias in Δm2
32 

•  Dramatic bias in Δm2
32 would not be acceptable – we could not report any 

oscillation parameter measurements in a scenario where we had an 
unexplained offset in Δm2

32 
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SANITY CHECKS & 
INTERESTING PLOT 
VARIATIONS 
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Impact of Oscillation Parameters 
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CPV: No parameter 
variation 

CPV: θ23 variation 
 



Impact of Systematics 
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Comparisons to CDR 
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New analysis results are consistent with CDR results. New suite of detailed 
systematic uncertainties has impact on sensitivity similar to that of normalization 
uncertainties applied in the CDR analysis.  

CPV: CDR CPV: Norm. Uncertainty 



Systematics Checks 
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FD detector 
parameters 
largely 
unconstrained 

Flux PCA components 
unconstrained by FD but 
well constrained by ND 

Ratios unconstrained 
by ND 



Systematics Checks 
•  Evaluating fractional contributions to post-

fit uncertainty on δCP measurement 
provides a sanity check on fit behavior 
•  Expect parameters of flux and cross-section 

models to be well constrained in the ND+FD fit 
•  Expect significant contribution from detector 

effects (particularly EM energy scale) because 
these are uncorrelated with the ND in our fitting 
framework 

•  Two choices for normalization of fraction 
contributions 
•  Fractional contribution normalized to one for 

each value of δCP – may overemphasize impact 
of systematics that have largest contribution 
where uncertainty is actually small 

•  Fractional contribution normalized to maximum 
uncertainty among all possible δCP values for all 
systematics – folds in the size of the uncertainty 
while still showing relative contributions 
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Impact of systematic 
uncertainty varies 
with oscillation 
parameters – larger 
for maximally CP-
violating values than 
CP-conserving values 



Systematics Checks 

•  Detector effects (esp. energy scale) are dominant uncertainty in these fits 
•  Assumptions about validation of hadron production and interaction model 

are implicit, so not visible in this study 
•  ND does a good job of constraining flux and interaction-model parameters 

in our fit 
•  Detector effects based on assumed calibration uncertainty (poorly 

constrained in fit) 

DUNE ND Review, June 2019: Long-Baseline Sensitivity Analysis 34 

Normalized  
to one 

Normalized  
to maximum unc. 



Systematics Checks 
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Normalized  
to one 

Normalized  
to maximum unc. 

•  Among interaction model uncertainties, uncertainty in νe/νµ and neutrino/
antineutrino ratios dominate 

•  Unconstrained by ND in these fits 
•  Prior constraint from Day-McFarland (arXiv:xx) 



Near-Term Plans 
•  Analysis will be updated to include some improvements/fixes to 

systematics treatment before final draft of TDR 
•  Primarily a respin – no major new work 
•  Will use NERSC: 8M CPU hours! 

•  Physics TDR currently being reviewed by DUNE collaboration and 
LBNC physics subcommittee 

•  TDR will be finalized at the end of July 
•  Long-baseline analysis framework will be used (and expanded) to 

contribute to physics studies for ND design work and ND CDR 
•  Additional “fake data” studies to demonstrate impact of various detector 

components and exclusive samples being developed 
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Summary 
•  Long-baseline oscillation sensitivity analysis has been updated to 

make use of: 
•  Full, automated FD simulation, reconstruction, event selection 
•  Simulated ND samples (parameterized reconstruction) 
•  Detailed treatment of systematics from flux, interaction model, and detector 

uncertainties 
•  Sophisticated fitting framework 

•  Analysis implicitly assumes capacity to detect and correct deficiencies 
in hadron production and neutrino interaction models 
•  This type of uncertainty is not explicitly included in the analysis framework 
•  Importance of this type of uncertainty demonstrated by the bias studies 

•  New analysis produces results that are similar to the CDR analysis 
and fits behave as we would expect 

•  LBL analysis demonstrates that DUNE can achieve its primary 
oscillation physics goals assuming we have a full-scale far detector, 
timely beam upgrades, and a highly-capable near detector 
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