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Today’s talk(s)

Talk by Michael Cervia: eigenvalues and eigenstates of
neutrino many-body Hamiltonian, for a two-flavor,
single-angle system

This talk:
Using eigenvalues and eigenstates to adiabatically evolve a
neutrino many-body system

Introduce measures to quantify entanglement in the system

Comparison between flavor evolution in the many-body
approach and in the mean-field description
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Outline

1 Many-body treatment of neutrino oscillations

2 Adiabatic evolution and entanglement measures

3 Comparison with mean-field calculations
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Neutrino oscillations: flavor/mass isospin operators

Denote Fermionic operators for neutrino flavor/mass states as
aα(p), aj(p), where α = e, x, and j = 1, 2

ae(p) = cos θ a1(p) + sin θ a2(p)
ax(p) = − sin θ a1(p) + cos θ a2(p)

Introduce the mass-basis isospin operators

J+
p = a†1(p)a2(p) , J−p = a†2(p)a1(p) ,

Jzp = 1
2
(
a†1(p)a1(p)− a†2(p)a2(p)

)
,

which obey the usual SU(2) commutation relations

[J+
p , J

−
q ] = 2δpqJ

z
p , [Jzp, J±q ] = ±δpqJ

±
p .
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Neutrino Hamiltonian: single-angle approximation

Many-body neutrino Hamiltonian with vacuum and ν–ν
interactions (two-flavor, single-angle):

Hν =
M∑
p=1

ωp ~B · ~Jp + µ(r) ~J · ~J,

where p is an index for the ωs in the system, M in number
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Neutrino Hamiltonian: eigenvalues and eigenstates

In terms of the parameters Λq (see Michael’s talk), the eigenvalues are
given by

E(Λ1, . . . ,ΛN ) = −
∑
p

ωp
2 + µ

N

2

(
N

2 + 1
)
− µ

∑
p

ωpΛp.

Eigenstates are given by eκ |ν1, . . . , ν1〉, where the operator eκ may be
obtained by recursively applying the following identities, for k = 1, . . . , κ.

Pf (Λ1, . . . ,ΛN ) =
M∑
p1=1
· · ·

M∑
pf =1

J−p1
· · · J−pf

f∑
m=1

Λpm

f∏
l=1
l 6=m

1
ωpl
− ωpm

.

ek(Λ1, . . . ,ΛN ) = 1
k

k∑
i=1

(−1)i−1ek−i Pi,
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2 Adiabatic evolution and entanglement measures

3 Comparison with mean-field calculations
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Adiabatic evolution of a many-body neutrino system

Eigenvalues and eigenvectors facilitate calculating the
adiabatic evolution of the many-body neutrino system,
starting from any given initial condition, as µ is varied

Consider an initial many-body state, |Ψ0〉 ≡ |Ψ(µ0)〉
Example: in the (two-)flavor-basis, |νeνxνeνe〉

May be decomposed into the basis of energy eigenstates:
|Ψ(µ0)〉 =

∑
n cn |en(µ0)〉

If µ were to change sufficiently slowly then the system
adiabatically evolves into

|Ψ(µ)〉 '
∑
n

cne
−i
∫ µ
µ0

En(µ′)
dµ′/dt dµ

′
|en(µ)〉
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Adiabatic evolution of a many-body neutrino system

Adiabatically evolve with Schrödinger’s Eq.

|Ψ(µ)〉 ≈ V
[

exp
(
−i
∫ µ

µ0
Σ(µ′) dr

dµ′
dµ′
)]
V T

0 |Ψ0〉 ,

V and V0 are (real) unitary transformations between energy
eigenstates and mass-basis product states, parametrized by the
2N solutions ~Λ ≡ (Λ1, . . . ,ΛN ), at times t and 0, respectively
Σ ≡ V HV T real, diagonal matrix of eigenvalues; any energy
degeneracies split by differing ~Λ parameters
V,Σ obtained efficiently using methods described in
arXiv:1905.04386 (Michael’s talk)
Functional form of µ(r) adopted from single-angle bulb-model
calculations—results not qualitatively dependent on this choice
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Quantum entanglement in many-body neutrino systems

In general, for µ > 0, the eigenstates of the Hamiltonian are
not factorizable into tensor products of individual neutrino
states, and may therefore be described as entangled

A system may initially start in a pure state—which happens to
be a particular superposition of energy eigenstates. However,
as the coefficients describing the superposition change with
time (as do the eigenstates themselves), the system can
become entangled. This is a feature unique to many-body
systems, and cannot be observed in mean-field calculations

Such entanglement may be quantified in terms of measures
such as entropy of entanglement, length of individual neutrino
polarization vectors, etc.
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Summary of entanglement measures
Density Matrix, Polarization Vector, & Entanglement Entropy

Consider a pure, many-body neutrino state ρ = |Ψ〉〈Ψ|.
Single-neutrino reduced density matrix: ρq ≡ Tr1,...,q̂,...,N [ρ], given
by (̂ denotes exclusion)

ρq =
2∑

i1,...,îq ,...,iN=1

〈νi1 . . . ν̂iq . . . νiN |ρ|νi1 . . . ν̂iq . . . νiN 〉 ,

S(ωq), Entropy of entanglement between neutrino q and rest:

S(ωq) = −Tr[ρq log ρq]

“Polarization vector” of neutrino q, ~P (ωq) = 2 〈 ~Jq〉, related to
the reduced density matrix as:

ρq = 1
2
(
I + ~P (ωq) · ~σ

)
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Relations between entanglement measures

Entanglement entropy has a one-to-one, inverse relationship with
the magnitude of the polarization vector

S(Pq) = −1− Pq
2 log

(1− Pq
2

)
− 1 + Pq

2 log
(1 + Pq

2

)
with Pq = |~P (ωq)|

P = 1 ⇐⇒ S = 0 (Unentangled)
P = 0 ⇐⇒ S = log(2) (Maximally Entangled)
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Entanglement: a preview
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[Cervia, AVP, Balantekin, Phys. Rev. D 100, 083001 (2019)]

Figure: Entropy of entanglement between the neutrino at frequency ω4
and the rest of the ensemble, for all eigenstates of an N = 4 neutrino
system, corresponding to κ = 1 (left) and 2 (right).
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Example: evolution of all-electron flavor initial state
Comparison of many-body and mean-field calculations

System with frequencies ω1, . . . , ωN where ωp = pω0

Evolve from |Ψ0〉 = |νe . . . νe〉 for systems of varying sizes
(N = 2, . . . , 9)
As µ ∼ 0 (r � Rν), H diagonal in mass-basis, therefore plot
final spectra in the mass-basis: Pz = n(ν1)− n(ν2)
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Correlation of Pz-discrepancies and entanglement entropy
Calculate ∆Pz(ω) ≡ |PMF

z (ω)− PMB
z (ω)| at r � Rν (i.e., µ ≈ 0)

For N = 4: all initial conditions with definite flavor νe, νx
(e.g., |νe, νx, νx, νx〉)
For N = 8: same ICs as N = 4, but with four additional νe
appended to left or right of spectrum

(N = 4)
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Trendline: y(S) ≡ PMF(S)− PMB(S) = 1− P (S)
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Example: initial condition with both neutrino flavors
Comparison of final Pz spectra between many-body and mean-field

Evolve |Ψ0〉 = |νeνeνeνeνxνxνxνx〉 until r � Rν
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[Cervia et al., Phys. Rev. D 100, 083001 (2019)]

Spectral swap-like features persist in the many-body calculations,
but are less sharp relative to mean-field calculations
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Comparison of Pz evolution with r

Same initial conditions, |Ψ0〉 = |νeνeνeνeνxνxνxνx〉
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Comparison with mean field

Different initial condition: |Ψ0〉 = |νeνeνeνeνeνeνeνx〉
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Conclusions

Calculations of collective neutrino flavor evolution typically
rely on a ‘mean-field’, i.e., effective one-particle description

Important to test the efficacy and/or limitations of the
mean-field by performing many-body calculations

Evolution in the many-body case can be studied by calculating
the eigenvalues and eigenvectors of the Hamiltonian by solving
the Bethe Ansatz equations (or an equivalent set of equations)

For certain simple systems, qualititive differences in flavor
evolution observed between many-body and mean-field
treatments, resulting from entangled states which are absent
in the mean-field limit
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Future Work
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Couple to baryons—how are nucleosynthetic yields affected?
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Comparison of Intermediate Pz Spectra
While r & Rν , N = 2 mono-flavor initially

|Ψ0〉 = |νeνe〉, and observe Pz before r � Rν

0.89

0.9

0.91

0.92

0.93

0.94

0.95

200 500 1000 2000

P
z
(ω

2
)

r (in units of ω−1
0 )

Many-body
Mean-�eld

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

200 500 1000 2000

S
(ω

p
)

r (in units of ω−1
0 )

Amol V. Patwardhan Entanglement and collective neutrino oscillations 25/24 Fermilab, Oct 2019



Many-body Hamiltonian Flavor evolution & entanglement Comparison with mean-field calculations

Comparison of Intermediate Pz Spectra
While r & Rν , N = 2 different-flavor initially

|Ψ0〉 = |νeνx〉, and observe Pz before r � Rν
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Entanglement in Individual Eigenstates
Eigenstates for N = 5, entanglement of N -th ν with the rest
Hightest/lowest-weight states are trivial
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