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The N3AS collaboration

@ Network in Neutrinos, Nuclear Astrophysics, and Symmetries

e Multi-institutional network (3 centers + 8 sites) dedicated to
recruiting and training postdocs, fostering collaborative
efforts, and advancing research in the following areas:

o Neutrino physics and astrophysics
e Dense matter
o Dark matter

e Funded by National Science Foundation (NSF) and
Heising-Simons Foundation

@ https://n3as.wordpress.com/
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Today's talk(s)

o Talk by Michael Cervia: eigenvalues and eigenstates of
neutrino many-body Hamiltonian, for a two-flavor,
single-angle system

@ This talk:

e Using eigenvalues and eigenstates to adiabatically evolve a
neutrino many-body system

e Introduce measures to quantify entanglement in the system

o Comparison between flavor evolution in the many-body
approach and in the mean-field description
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@ Many-body treatment of neutrino oscillations
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Neutrino oscillations: flavor/mass isospin operators

@ Denote Fermionic operators for neutrino flavor/mass states as
ao(p), aj(p), where o = e, z, and j = 1,2

ac(p) = cosfai(p)+sind ax(p)
az(p) = —sinfai(p)+ cosb ax(p)

@ Introduce the mass-basis isospin operators

Jp = aJ{(P)@(P) ; Jp = a;(p)m(p) ,
73 = & (al (@) (p) — ab(p)as(p)) .

which obey the usual SU(2) commutation relations

(I, Jq] = 20pqJ5 [J2, J3] = £6paJy-
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Neutrino Hamiltonian: single-angle approximation

@ Many-body neutrino Hamiltonian with vacuum and v—v
interactions (two-flavor, single-angle):

-

M
H, =Y w,B-Jy+p(r)J-J,
p=1

where p is an index for the ws in the system, M in number
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Neutrino Hamiltonian: eigenvalues and eigenstates

In terms of the parameters A, (see Michael's talk), the eigenvalues are

given by
_ wp N (N
E(Ar . Ay) ==Y +ny <2+1> — Y wphy
P P
Eigenstates are given by e, |v1,...,v1), where the operator e, may be
obtained by recursively applying the following identities, for k =1, ..., k.
M M f f )
CUYSITED SRE SE-TRED Y | G
p1=1 pr=1 m=1 llil y4 Pm
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© Adiabatic evolution and entanglement measures
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Adiabatic evolution of a many-body neutrino system

o Eigenvalues and eigenvectors facilitate calculating the
adiabatic evolution of the many-body neutrino system,
starting from any given initial condition, as y is varied

e Consider an initial many-body state, |¥¢) = |V (o))

o Example: in the (two-)flavor-basis, |Vev,veve)

@ May be decomposed into the basis of energy eigenstates:

(W (p0)) = 220 ¢n len(po))

o If u were to change sufficiently slowly then the system
adiabatically evolves into

® En(ﬂ )

=3 ene o WA e (1)
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Adiabatic evolution of a many-body neutrino system

o Adiabatically evolve with Schrédinger's Eq.

) =V exp (=i [ 200) Z ) [T o)

o V and Vj are (real) unitary transformations between energy
eigenstates and mass-basis product states, parametrized by the
N solutions A = (Ay,...,Ay), at times ¢ and 0, respectively

o X =VHVT real, diagonal matrix of eigenvalues; any energy
degeneracies split by differing A parameters

e VX obtained efficiently using methods described in
arXiv:1905.04386 (Michael's talk)

e Functional form of u(r) adopted from single-angle bulb-model
calculations—results not qualitatively dependent on this choice
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Quantum entanglement in many-body neutrino systems

@ In general, for > 0, the eigenstates of the Hamiltonian are
not factorizable into tensor products of individual neutrino
states, and may therefore be described as entangled

@ A system may initially start in a pure state—which happens to
be a particular superposition of energy eigenstates. However,
as the coefficients describing the superposition change with
time (as do the eigenstates themselves), the system can
become entangled. This is a feature unique to many-body
systems, and cannot be observed in mean-field calculations

@ Such entanglement may be quantified in terms of measures
such as entropy of entanglement, length of individual neutrino
polarization vectors, etc.
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Summary of entanglement measures
Density Matrix, Polarization Vector, & Entanglement Entropy

Consider a pure, many-body neutrino state p = |¥)(¥|.
Single-neutrino reduced density matrix: p, = Tr1,...,§,...,N[p]' given
by (" denotes exclusion)
2
pq = Z (Viy - Tig - Viy|plViy - Tiy o Vi)

~

i1 eeyiqrenin=1
@ S(wy), Entropy of entanglement between neutrino ¢ and rest:

S(wq) = —Tr[pq log pq]

@ “Polarization vector” of neutrino ¢, ﬁ(wq) =2 <J;> related to
the reduced density matrix as:
1 .

Pq = §(H+P(wq) '5)
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Relations between entanglement measures

Entanglement entropy has a one-to-one, inverse relationship with
the magnitude of the polarization vector

1-P, 1-PF, 1+ P 14+ P,
S(Py) =— 2q10g< 2q)— 2qlog( 2q>

with P, = | P(w,)]
e P=1<+<= S=0 (Unentangled)
e P=0 < S =log(2) (Maximally Entangled)
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Entanglement: a preview

0.6 0.6

Entropy
Entropy

0 1 2 3 1 5 0 1 2 3 4 5

nfwo ifwo

[Cervia, AVP, Balantekin, Phys. Rev. D 100, 083001 (2019)]

Figure: Entropy of entanglement between the neutrino at frequency wy
and the rest of the ensemble, for all eigenstates of an N = 4 neutrino
system, corresponding to k = 1 (left) and 2 (right).
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© Comparison with mean-field calculations
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Example: evolution of all-electron flavor initial state

Comparison of many-body and mean-field calculations

@ System with frequencies w1, ...,wxn where w, = pwy

e Evolve from |¥() = |v, ... 1) for systems of varying sizes
(N=2,...,9)

@ As i~ 0 (r> R,), H diagonal in mass-basis, therefore plot
final spectra in the mass-basis: P, = n(v1) — n(vs)

1 . . 0.2
Many-body —e— p—
Mean-field —e— —
0.9 —
0.1¢ I
08
=z b~
) Rt
=~ or
0.05
0.6
0.5 0
0 2 14 6 s 10 200 500 1000 2000

N 7 (in units of wy ')

NB: In the mean-field case, S = 0 always
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Correlation of P,-discrepancies and entanglement entropy

Calculate AP, (w) = |PMF(w) — PMB(w)| at 7 > R, (i.e., u =~ 0)
@ For N = 4: all initial conditions with definite flavor v, v,

(e.8., |Ves Vay Vary V)

@ For N = 8: same ICs as N = 4, but with four additional .

appended to left or right of spectrum

1 . . 1 . .
09 - 09 -
08 - 08 -
07 07
—~ 06} —~ 06|
3 3
= 05} =05} .
= 05 = 05
< 04} < 04 | . e
’ S0
03 03 . R
02 - 02 - . .
< .
0.1 0.1 b .
0 " . . . . . 0 Y L e e h A
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
S(wp) S(wy)

Trendline: y(S) = PMY(S) — PMB(S) =1 - P(9)
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Example: initial condition with both neutrino flavors
Comparison of final P, spectra between many-body and mean-field

e Evolve (V) = |VelelelelylylsVy) until 7> R,

1
P, (initial) —s—
PMB (final) ---e--- s
PMF (final) —o— e
o
~ A \ e N 06 H
3 \ \\ I Y )
& \ £ RN = 40
\/ S 0.4
7/\ o
\ - \ W
o5 b v 7\ ) 021
\ i\ Ry
L e .
i - | S { 0
1 2 3 4 5 6 7 8 200

500 1000 2000

w (in units of wy) 7 (in units of w; ")

[Cervia et al., Phys. Rev. D 100, 083001 (2019)]

Spectral swap-like features persist in the many-body calculations,

but are less sharp relative to mean-field calculations
Amol V. Patwardhan
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Comparison of P, evolution with r

e Same initial conditions, |Vg) = |VelelelelyValaly)

! [— - ‘ !
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[Cervia et al., Phys. Rev. D 100, 083001 (2019)]
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Comparison with mean field

Different initial condition: |Wg) = |VelelelVelelelels)

P, (initial) —s— S(w) ——
X S(wp) ——
PME (final) ---e--- os Sy ——
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y ]
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Conclusions

o Calculations of collective neutrino flavor evolution typically
rely on a ‘mean-field’, i.e., effective one-particle description

@ Important to test the efficacy and/or limitations of the
mean-field by performing many-body calculations

@ Evolution in the many-body case can be studied by calculating
the eigenvalues and eigenvectors of the Hamiltonian by solving
the Bethe Ansatz equations (or an equivalent set of equations)

@ For certain simple systems, qualititive differences in flavor
evolution observed between many-body and mean-field
treatments, resulting from entangled states which are absent
in the mean-field limit
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Future Work

0.6

I~ —— Many-hody ‘?
——— Mean-field .

04 |

02+

@ Next steps in calculations

o Larger N + inclusion of 7 (w < 0)

o Matter (MSW) potential

o Multiple neutrinos in frequency bins (j, > 1/2)
o Beyond single-angle approximation p — fipq

@ Couple to baryons—how are nucleosynthetic yields affected?
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Comparison of Intermediate P, Spectra
While » 2 R,,, N = 2 mono-flavor initially

@ |Uy) = |vere), and observe P, before r > R,

095 . . . 0.018 . . .
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Comparison of Intermediate P, Spectra
While » 2 R,, N = 2 different-flavor initially

e |Uy) = |very), and observe P, before r > R,
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Entanglement in Individual Eigenstates

o Eigenstates for N = 5, entanglement of N-th v with the rest

@ Hightest/lowest-weight states are trivial

m = +3/2 m=+4+1/2
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