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Neutrino Flavor/Mass Isospin
SU(2) Notation

Fermionic ops for ν flavor and mass states aα(p) and aj(p),
respectively, for α = e, x and j = 1, 2 with mixing angle θ(

ae(p)
ax(p)

)
=

(
cos θ sin θ
− sin θ cos θ

)(
a1(p)
a2(p)

)
Introduce mass-basis isospin ops

J+
p = a†1(p)a2(p), mass 1 : |ν1〉 ←→ |↑〉
J−p = a†2(p)a1(p), mass 2 : |ν2〉 ←→ |↓〉

Jzp =
1

2
[a†1(p)a1(p)− a†2(p)a2(p)]

obeying the usual SU(2) commutation relations

[J+
p , J

−
p ] = 2δpqJ

z
p, [Jzp, J

±
q ] = ±δpqJ±p .
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Neutrino Many-body Hamiltonian
In Terms of Isospin

Vacuum Oscillations

Hvac =
∑
p

2∑
i=1

m2
i

2|p|a
†
i (p)ai(p)

=
∑
ω

ω ~B · ~Jω + const, ~Jω =
∑

|p|= δm2

2ω

~Jp

with ω =
δm2

2|p| and ~B = (0, 0,−1)m = (sin 2θ, 0,− cos 2θ)f

Neutrino-Neutrino Interaction

Hνν =

√
2GF
V

∑
p,q

(1− p̂ · q̂)
∑

g,h=e,x

a†g(p)ah(p)a†h(q)ag(q)

=

√
2GF
V

∑
p,q

(1− cosϑpq) ~Jp · ~Jq + const
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Neutrino Hamiltonian: Single-angle Approximation
In Terms of Isospin

Make the problem more tractable by averaging over θpq;

Hνν ≈
√

2GF
V

〈1− cosϑpq〉
∑
pq

~Jp · ~Jq

= µ(r) ~J · ~J, where ~J =
∑
ω

~Jω

In summary, Hamiltonian for (vacuum + collective) oscillations

H = Hvac +Hνν ≈
∑
ω

ω ~B · ~Jω + µ(r) ~J · ~J
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Mean-field Treatment
Random-phase Approximation

Obtain effective one-body Hamiltonian via RPA:

H ∼ HRPA =
∑
ω

ω ~B · ~Jω + µ~P · ~J

where ~P =
∑

ω
~Pω, and ~Pω = 2 〈 ~Jω〉 is the “polarization” vector

Self-consistency requirement of mean-field theory implies

d

dt
~Pω = (ω ~B + µ~P )× ~Pω

for each ω.

Additional interpretation: ~Pω is the Bloch vector of that
neutrino’s density matrix in mass/flavor basis. Here, |~Pω| = 1.
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Many-body Eigenstates, Limiting Cases
µ→ 0,∞

General: Many-body neutrino Hamiltonian (two-flavors, single-angle)

H =

M∑
p=1

ωp ~B · ~Jp + µ~J · ~J

where p is an index for the M different ω values

µ→ 0: Eigenstates are simple tensor products of single-particle
vacuum mass eigenstates |νi1 · · · νiN 〉, ij = 1, 2, with eigenvalues

−1
2

∑M
p=1 ωp(n1,p − n2,p)

e.g.) N = 2 : |ν1ν1〉 , |ν1ν2〉 , |ν2ν1〉 , |ν2ν2〉

µ→∞: Eigenstates are the total isospin states |j,m〉f/m with
eigenvalues µj(j + 1)
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Many-body Eigenstates, Generic µ
The Richardson-Gaudin Approach

For 0 ≤ µ ≤ ∞, the two extremal states |ν1 · · · ν1〉 = |N2 ,+N
2 〉

and |ν2 · · · ν2〉 = |N2 ,−N
2 〉 are eigenstates with eigenvalues

E±N/2 = ∓
∑
p

ωp
np
2

+ µ
N

2

(
N

2
+ 1

)
where np is the number of neutrinos at ωp and N =

∑
p np

Construct the remaining 2N − 2 eigenstates from the extremal
states by hitting with the Gaudin operators

S±(ζα) =

M∑
p=1

J±p
ωp − ζα

where {ζα} is a set of parameters yet to be determined.
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Bethe Ansatz Equations
Determining those parameters

For one parameter, S−(ζ) |N2 ,+N
2 〉 is an

eigenstate with eigenvalue E+N/2 + ζ − µN

if
1

2µ
+

M∑
p=1

jp
ωp − ζ

= 0,

where jp = np/2.

For multiple parameters, S−(ζ1) · · ·S−(ζκ) |N2 ,+N
2 〉 is an

eigenstate with eigenvalue E+N/2 +
∑κ

α=1 ζα − µκ(N − κ+ 1)

if
1

2µ
+

M∑
p=1

jp
ωp − ζα

= −
κ∑

β=1
β 6=α

1

ζα − ζβ
.
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Solving the Bethe Ansatz Equations
Some remarks...

1

2µ
+

M∑
p=1

jp
ωp − ζα

= −
κ∑

β=1
β 6=α

1

ζα − ζβ
.

For κ parameters, solve a system of κ coupled algebraic equations
in κ complex variables.

There are many singularities, which can be avoided by converting
to κ coupled, deg-(M + κ− 2) polynomial equations

For complete set of eigenstates, need to solve a different set of
equations for each 0 < κ < M .

We can avoid these complexities of the problem...
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The ‘Lambda’ Approach
An Alternative/Reduction of Bethe Ansatz

Let P (λ) =
∏
α(λ− ζα), the characteristic polynomial of BA eq.

Define unitless log derivative, Λ̃(λ) = µ d
dλ(logP (λ)) =

∑
α

µ
λ−ζα ,

to convert κ algebraic equations into one ODE for Λ:

Λ̃2(λ) + Λ̃(λ) + µΛ̃′(λ) = µ

M∑
q=1

2jq
Λ̃(λ)− Λ̃(ωq)

λ− ωq

Boundary condition is quite complicated...

Taking λ→ ωp and jp = 1/2 (interpretation: bin with ωps such
that np = 1), we can look for values of Λ̃p ≡ Λ̃(ωp):

Λ̃2
p + Λ̃p = µ

M∑
q=1
q 6=p

Λ̃p − Λ̃q
ωp − ωq
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Solving Lambda Equations
Homotopy Continuation

Λ̃2
p + Λ̃p = µ

M∑
q=1
q 6=p

Λ̃p − Λ̃q
ωp − ωq

µ→ 0: each Λ̃p = 0,−1. Thus, 2N in solutions total. In each

soln, the number of Λ̃p that are −1 is the κ of the solution.

Even when µ > 0,
∑
p Λ̃p = −κ.

Homotopy Method: each of 2N solns for µ > 0 can be
constructed incrementally, starting from µ = 0.

Step 1: Use solns for each Λ̃p|µ=µn
as starting guess for solns at

µ = µn + δµ.
Step 2: Apply iterative numerical methods (e.g., Newton-Raphson)
to improve the guess.

Guarantee any pair of solutions, {Λ̃p}1 and {Λ̃p}2, is different at
every µ.
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E.g., Ten-neutrino System
A {Λ̃p} Soln

Def: Λp ≡ Λ(ωp) = µ−1Λ̃p.
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Figure: A κ = 6 soln {Λ1, . . . ,Λ10} as a function of µ, for 10 neutrinos with
frequencies ωp = pω0. Shown: one sample soln out of 1,024 for this system.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99, 123013 (2019).]
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A Comparison of Techniques
BA v. Lambda

1

2µ
+

M∑
p=1

jp
ωp − ζα

= −
κ∑

β=1
β 6=α

1

ζα − ζβ

For κ parameters, solve a system
of κ coupled algebraic eqs. in κ
complex variables.

Many singularities, avoided with κ
deg-(M+κ−2) polynomial eqs.

Solve a different set of equations
for each 0 < κ < M .

Λ̃2
p + Λ̃p = µ

M∑
q=1
q 6=p

Λ̃p − Λ̃q
ωp − ωq

For N neutrinos, solve a system
of N coupled algebraic eqs. in N
real variables.

No singularities, already have N
deg-2 polynomial eqs.

Solve this set of equations once
for all κ.

NB: Both techniques require fixing jp for solutions
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Energy Eigenvalues from Lambdas
Removing BA variables altogether, Part 1/2

Energy eigenvalues may be rewritten in terms of Λ̃p =
∑

α
µ

ωp−ζα :

Recall : E(ζ1, . . . , ζκ) = EN/2 − κµ(N − κ+ 1) +
∑
α

ζα

⇐⇒ E(Λ̃1, . . . , Λ̃N ) = −
∑
p

ωp
2

+ µ
N

2

(
N

2
+ 1

)
−
∑
p

ωpΛ̃p

Instructive to categorize eigenstates/values by κ = −∑p Λ̃p:
solns are eigenstates of Jz =

∑
p J

z
p with eigenvalue m = N/2−κ.

Within κ, eigenvalues split into branches for µ� ω0, each
associated with particular |j,m〉 with j = |m|, |m|+ 1, . . . , N/2.
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Eigenvalues N = 10
κ = 2 solns
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Figure: Energy eigenvalues for all κ = 2 (m = +3) solns of Lambda eqs., as a
function of µ, for N = 10.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99 123013 (2019).]
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Eigenvalues N = 10
κ = 5 solns
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Figure: Energy eigenvalues for all κ = 5 (m = 0) solns of Lambda eqs., as a
function of µ, for N = 10.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99 123013 (2019).]
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Energy Eigenstates from Lambdas
Removing BA variables altogether, Part 2/2

Recognize eigenstates in terms of elementary symmetric
polynomials, en, and power sums, Pn, of Gaudin ops
S−α ≡ S−(ζα):

Recall : |ζ1, . . . , ζκ〉 = eκ(S−1 , . . . , S
−
κ ) |N2 ,+N

2 〉

⇐⇒ |Λ̃1, . . . , Λ̃N 〉 =

[
1

κ

κ∑
i=1

(−1)i−1eκ−iPi

]
|N2 ,+N

2 〉

Via Newton’s identities, calculate eκ from power sums, given by:

Pn =
∑
α

(S−α )n =

κ∑
i=1

∑
p1

· · ·
∑
pn

J−p1 · · · J−pn
(ωp1 − ζα) · · · (ωpn − ζα)

=
∑
p1

· · ·
∑
pn

J−p1 · · · J−pn
n∑

m=1

Λpm

n∏
l=1
l 6=m

(ωpl − ωpm)−1
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Eigenstates Results
Two solns
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Figure: Overlaps of particular energy states ψn with msas basis states (with
i1, . . . , iN = 1, 2), |〈νi1 · · · νiN |ψn〉|2, as functions of µ. Left: particular
eigenstate with κ = 1 from N = 3 system. Right: particular eigenstate with
κ = 2 from N = 4 system.

Note: for µ > 0, a state with κ has NCκ nontrivial components.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99 123013 (2019).]

20 / 21



Conclusions

Calculations of collective neutrino flavor evolution typically
employ a mean field

Many-body calculations permit test of efficacy and limitations of
mean field

Evolution in MB can be studied by characterizing the whole
spectrum of the Hamiltonian, as we have

For certain simple systems, qualitative differences in flavor
evolution can be observed between MF and MB treatments,
resulting from entangled states–talk by Amol Patwardhan to
follow!
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Entanglement in Energy Eigenstates
A Preview, N = 4

Density matrix for neutrino 4 from energy state ψn: ρ4 = Tr1,2,3[|ψn〉〈ψn|]
Entanglement entropy between neutrino 4 and {1, 2, 3}: S = −Tr[ρ4 ln(ρ4)]
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Figure: Entropy of entanglement between neutrino at frequency ω4 and the
rest of ensemble, for all N = 4 eigenstates with κ = 1 (left) and 2 (right).

[Cervia et al., Phys. Rev. D 100 083001 (2019).]
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Results: for M = 10
Energy Level Crossings

Many level crossings, including between states of the same m
However, Λp ↔ eigenvalue of operator hp(µ), [h(µ), H(µ)] = 0;
the non-degeneracy of {Λp} sets breaks these crossings.
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Neutrino flavor evolution: matter effects

Matter backgrounds (electrons, nucleons, etc.) modify flavor
evolution: neutrinos acquire “effective mass” through forward
scattering (like photons in medium, but via weak interactions)

In typical environments (T . 10 MeV), νe experience charged-
and neutral-current interactions, unlike νµ and ντ (only NC)

In such a medium, νe acquires additional effective mass compared
to νµ, ντ

i
d

dt

(
ψνe
ψνx

)
=

[
U

1

2E

(
m2

1 0
0 m2

2

)
U † +

(
VCC 0

0 0

)](
ψνe
ψνx

)
where VCC =

√
2GFnBYe.
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Mean-field (random phase) approximation

ν̄β(
~p′)

ν̄β(~p)να(~k′)

να(~k) ν̄β(
~p′)

ν̄β(~p)

να(~k′)

να(~k)
ν̄α(~p′)

ν̄β(~p)να(~k′)

νβ(~k) ν̄α(~p′)

ν̄β(~p)

να(~k′)

νβ(~k)

Figure: Volpe et al., 2013

In an effective one-particle approximation, a single neutrino is
described as interacting with an average potential created by all
other particles in the medium (including neutrinos)

Operator product O1O2 approximated as

O1O2 ∼ O1〈O2〉+ 〈O1〉O2 − 〈O1〉〈O2〉.
Above expectation values are calculated w.r.t state |Ψ〉 which
satisfies 〈O1O2〉 = 〈O1〉〈O2〉
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Neutrino Flavor Evolution: Collective Phenomena with a
Mean Field

Red: Electron flavor
Blue: Electron flavor

Top: spectral swap in inverted
hierarchy. Bottom: spectral
swap in normal hierarchy.
(Dasgupta et al., 2009).
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Obtaining the roots ζi from the solutions Λ(ωp)

One can derive a set of constraint equations involving {Λ̃p} and
{ζi}: ∑

p

jp ω
k
p Λ̃p =− 1

2µ
Qk +

k∑
l=1

Ql−1

(∑
p

jp ω
k−l
p

)

− 1

2

[
k∑
l=1

Qk−lQl−1 − k Qk−1
]
,

where Qk =
∑
i

ζki

In particular, the k = 0 constraint:∑
p

jp Λ̃p = − κ

2µ
,

is useful for classifying solution sets {Λ̃p} according to κ
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Obtaining the roots ζi from the solutions Λ(ωp)

Using the previous recursion relation, all Qk’s can be calculated
one-by-one, once all the Λ̃p are known

The power sums Qk are related to the elementary symmetric
polynomials ei via Newton’s identities

k ek(ζ1, . . . , ζκ) =

k∑
i=1

(−1)i−1ek−iQi,

which allows us to construct coefficients of the polynomial

P (λ) ≡
κ∏
i=1

(λ− ζi) =
κ∑
k=1

(−1)k ek λ
κ−k,

and the roots ζα can then be calculated using standard
polynomial rootfinding methods
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Ten neutrino system: roots {ζα}
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Figure: Roots of the Bethe Ansatz equations: real and imaginary parts of
{ζα : α = 1, . . . , κ}, as functions of µ. Sample solution for κ = 2.
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Ten neutrino system: roots {ζα}
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Figure: Roots of the Bethe Ansatz equations: real and imaginary parts of
{ζα : α = 1, . . . , κ}, as functions of µ. Sample solution for κ = 5.
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