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Neutrino Flavor/Mass Isospin
SU(2) Notation

@ Fermionic ops for v flavor and mass states a,(p) and a;(p),
respectively, for « = e, x and j = 1,2 with mixing angle 6

() = (ot ) (22)

@ Introduce mass-basis isospin ops

J; = ai(p)ag(p), mass 1: |v1) «— [1)
Jp = a}(p)ar(p). mass 2 [vg) <— 1)
Jz = Lal(p)ar(p) — af(p)aa(p)]

L
obeying the usual SU(2) commutation relations
[JF, I3 = 20pq 05, [J3, J5] = £6pq s
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Neutrino Many-body Hamiltonian

In Terms of Isospin

@ Vacuum Oscillations

2,2
Hyae = ZZ : a;r(p)ai(p>

< 2|p|

:Zw§~j;,+const, J;: Z jp
w

_ m?2
Ipl=5"-

. om? = .
with w = W and B = (0,0, —1),, = (sin26,0, — cos 20)
| &

@ Neutrino-Neutrino Interaction

= Y9ES 0 5.9 Y al(pan(p)al (@ay(@)

%4
jsNe} g,h=e,x

_ V2Gp
vV

Z(l — €08 Upq)Jp - Jq + const

P.q
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Neutrino Hamiltonian: Single-angle Approximation

In Terms of Isospin

@ Make the problem more tractable by averaging over Opq;

V2GE > o
Hy, ~ % (1 —costpq) Z Jp - Jq

Pa
= u(r)J-J, where J= Zj;

@ In summary, Hamiltonian for (vacuum + collective) oscillations

H=Hg.+H, ~ ZW§L+M(T)jj
w
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Mean-field Treatment

Random-phase Approximation

@ Obtain effective one-body Hamiltonian via RPA:

—

H o~ HYA =N"WB - Joy+pP - J
w

where P = Y w P, and P, =2 (J_Zu) is the “polarization” vector
@ Self-consistency requirement of mean-field theory implies

d - L
%Pw: (wB + pP) x P,

for each w.

@ Additional interpretation: P, is the Bloch vector of that
neutrino’s density matrix in mass/flavor basis. Here, |P,| = 1.
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Many-body Eigenstates, Limiting Cases

u— 0,00

General: Many-body neutrino Hamiltonian (two-flavors, single-angle)

—

M
p=1

where p is an index for the M different w values

@ 1 — 0: Eigenstates are simple tensor products of single-particle
vacuum mass eigenstates |v;, - - vy ), i = 1,2, with eigenvalues

M
*% szl wp(n1p — n2p)
eg) N=2: |, |nwr), ), |rw)

® p — oo: Eigenstates are the total isospin states [j,m)/,, with
eigenvalues pj(j + 1)
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Many-body Eigenstates, Generic p
The Richardson-Gaudin Approach

@ For 0 <y < 00, the two extremal states |vg ---v) = |%, +%>

and [vo - 1n) = | &, — ) are eigenstates with eigenvalues

2

n N /N
E = L rp—{=+1
+N/2 :FZP:WpQ TS <2 + )
where ny, is the number of neutrinos at w, and N = ) » T

@ Construct the remaining 2%V — 2 eigenstates from the extremal
states by hitting with the Gaudin operators

M +
Jp

Si(ga) = Z

p=1 wp - Ca

where {(,} is a set of parameters yet to be determined.
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Bethe Ansatz Equations

Determining those parameters

@ For one parameter, S™(¢) %,+%> is an

eigenstate with eigenvalue E /5 + ¢ — pulN

1 &
if — + P
21 ;wp—

where j, = n,/2.

o For multiple parameters, S™(¢1) -+ S™(Cs) |5, +5) is an
eigenstate with eigenvalue F /5 + > Ca —puk(N —k+1)

. - 1
if Zi{a—gﬁl

p= 1 B=1
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Solving the Bethe Ansatz Equations

Some remarks...

1 & o

— p —_ _

2:“’ pZ:;wp_Ca Bz:lga_gﬁ
B#a

o For x parameters, solve a system of x coupled algebraic equations
in Kk complex variables.

@ There are many singularities, which can be avoided by converting
to k coupled, deg-(M + k — 2) polynomial equations

@ For complete set of eigenstates, need to solve a different set of
equations for each 0 < x < M.

We can avoid these complexities of the problem...
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The ‘Lambda’ Approach

An Alternative/Reduction of Bethe Ansatz

o Let P(A) =[],(A —Ca), the characteristic polynomial of BA eq.
Define unitless log derivative, A(\) = p-k(log P(\)) =3, ﬁ
to convert x algebraic equations into one ODE for A:

A2(N) + AN + pA' (A 2j Afwy)
)+ A0 + g Z e
Boundary condition is quite complicated...

o Taking A — wp and j, = 1/2 (interpretation: bin with wys such
that n,, = 1), we can look for values of A, = A(w,):

A, — A
At Ay=p) 21
q:lwp wq

q#p
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Solving Lambda Equations

Homotopy Continuation

=1 OJ (A)q
a7#p
o u— 0: each A, = 0, —1. Thus, 2V in solutions total. In each
soln, the number of A, that are —1 is the x of the solution.
o Even when 1 >0, > A, = —k.
e Homotopy Method: each of 2%V solns for ;> 0 can be

constructed incrementally, starting from p = 0.
o Step 1: Use solns for each A,|,=,, as starting guess for solns at

=y +Op.
o Step 2: Apply iterative numerical methods (e.g., Newton-Raphson)
to improve the guess.
o Guarantee any pair of solutions, {A,}; and {A,}s, is different at
every fi.
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E.g., Ten-neutrino System
A {A,} Soln

Def: A, = Alw,) = p'A,.

p/wo

Figure: A k = 6 soln {A1,...,A10} as a function of u, for 10 neutrinos with
frequencies w, = pwp. Shown: one sample soln out of 1,024 for this system.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99, 123013 (2019).]
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A Comparison of Techniques
BA v. Lambda

! Jr ! MR A

7_’_ = — A2 A _ p q

2p ];Wp_Ca Bz:l(a—fﬂ Ap"‘Ap—ME m
=

@ For k parameters, solve a system @ For N neutrinos, solve a system
of k coupled algebraic egs. in k of N coupled algebraic egs. in N
complex variables. real variables.

@ Many singularities, avoided with x @ No singularities, already have N
deg-(M +k—2) polynomial egs. deg-2 polynomial egs.
@ Solve a different set of equations @ Solve this set of equations once
foreach 0 <k < M. for all k.
NB: Both techniques require fixing j, for solutions
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Energy Eigenvalues from Lambdas
Removing BA variables altogether, Part 1/2

@ Energy eigenvalues may be rewritten in terms of Ap =0’ g
P o

Recall: E(C1,...,Ce) = Enja — spu(N — 6+ 1) +Z§a

@E(Al,...,AN):—ZC‘;eruZ( ) pr

p

o Instructive to categorize eigenstates/values by K = — > Ay
solns are eigenstates of J* = 3 J7 with eigenvalue m = N/2—«.
Within &, eigenvalues split into branches for p > wy, each
associated with particular [j,m) with j = |m|,|m|+1,...,N/2.
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Eigenvalues N

k = 2 solns

140 T T
120 |

100 -

< A) Jwo

Energy eigenvalues: E(A4,.

w/wo

Figure: Energy eigenvalues for all K = 2 (m = +3) solns of Lambda egs., as a
function of u, for N = 10.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99 123013 (2019).]
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Eigenvalues N

k = 5 solns

160 T T
140 |

120 -

< A) Jwo

Energy eigenvalues: E(A4,.

w/wo

Figure: Energy eigenvalues for all kK =5 (m = 0) solns of Lambda egs., as a
function of u, for N = 10.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99 123013 (2019).]
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Energy Eigenstates from Lambdas

Removing BA variables altogether, Part 2/2

@ Recognize eigenstates in terms of elementary symmetric
polynomials, e,, and power sums, P, of Gaudin ops

So =57 (Ca):
Recau: ‘Cl""’€l€> :elf( ;aasn_) %7‘*’%)

K

. - 1 .
= |A1,.. AN) = [H Z(—l) 16;4—1'131‘] 15 +5)
i=1

Via Newton's identities, calculate e, from power sums, given by:

T

Pnzz 22 Z _(a‘ (wpn—Ca)
_Z Z ’ J ZAmepz_wpm)il

l;ém
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Eigenstates Results

Two solns

< Vigl2) 2
- visls)
o
>

Vg
[y, .-

fwo nfwo

Figure: Overlaps of particular energy states v, with msas basis states (with
i1y yin = 1,2), (s, - viy|n)|?, as functions of u. Left: particular
eigenstate with k = 1 from N = 3 system. Right: particular eigenstate with
k = 2 from N = 4 system.

Note: for 1 > 0, a state with « has VC,; nontrivial components.

[Patwardhan, Cervia, Balantekin, Phys. Rev. D 99 123013 (2019).]
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Conclusions

@ Calculations of collective neutrino flavor evolution typically
employ a mean field

@ Many-body calculations permit test of efficacy and limitations of
mean field

@ Evolution in MB can be studied by characterizing the whole
spectrum of the Hamiltonian, as we have

@ For certain simple systems, qualitative differences in flavor
evolution can be observed between MF and MB treatments,

resulting from entangled states—talk by Amol Patwardhan to
follow!
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Entanglement in Energy Eigenstates
A Preview, N =4

Density matrix for neutrino 4 from energy state 1,,: ps = Try 2 3[|tn) (¥n]]
Entanglement entropy between neutrino 4 and {1,2,3}: S = —Tr[p41n(p4)]

o 0.7
0.6 06
s 05

z 04 5 04

: :

g 03 Z 03
oxey 0.2
o - 0.1
0 )

0 1 2 3 4 5 0 1 2 3 1
/wo n/wo

Figure: Entropy of entanglement between neutrino at frequency w4 and the
rest of ensemble, for all N = 4 eigenstates with x = 1 (left) and 2 (right).

[Cervia et al., Phys. Rev. D 100 083001 (2019).]
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Results: for M = 10

Energy Level Crossings

@ Many level crossings, including between states of the same m
o However, A, <+ eigenvalue of operator hy(u), [h(p), H(p)] = 0;
the non-degeneracy of {A,} sets breaks these crossings.
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Neutrino flavor evolution: matter effects

e Matter backgrounds (electrons, nucleons, etc.) modify flavor
evolution: neutrinos acquire “effective mass” through forward
scattering (like photons in medium, but via weak interactions)

@ In typical environments (7' < 10 MeV), v, experience charged-
and neutral-current interactions, unlike v, and v, (only NC)

@ In such a medium, v, acquires additional effective mass compared
to vy, vy

.d wue o 1 m% 0 t VCC 0 ¢1/e
Lat (1/11,) - [UZE < 0 m§> U0 o)\,
where VCC = \/§GFTLBYE.
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Mean-field (random phase) approximation

Figure: Volpe et al., 2013

@ In an effective one-particle approximation, a single neutrino is
described as interacting with an average potential created by all
other particles in the medium (including neutrinos)

@ Operator product 0109 approximated as
010, ~ 01(02) + (01)02 — (01)(O2).

Above expectation values are calculated w.r.t state |¥) which
satisfies (0102) = (01)(O5)
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Neutrino Flavor Evolution: Collective Phenomena with a

Mean Field

Neutrinos
T T T T

Red: Electron flavor
Blue: Electron flavor

Top: spectral swap in inverted NH
hierarchy. Bottom: spectral
swap in normal hierarchy.
(Dasgupta et al., 2009).

1 1
0 10 20 30 40 50
Energy [MeV]

26 / 21



Obtaining the roots ¢; from the solutions A(w,)

@ One can derive a set of constraint equations involving {A,} and

{G}:
k
ijw}’; Ap = - %Qk + Z Qi1 (ijw]l;l>
P H =1 P
B
—3 [Z Q-1 Q1—1 — ka—l] ;
=1
where QQ, = Z Cf

@ In particular, the £ = 0 constraint:
= K
2 vk =—3
2
p ©

is useful for classifying solution sets {]\p} according to K
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Obtaining the roots ¢; from the solutions A(w,)

@ Using the previous recursion relation, all Qi's can be calculated
one-by-one, once all the A, are known

@ The power sums Q) are related to the elementary symmetric
polynomials e; via Newton's identities

k
k ek(Cb SERE) Cl-@) = Z(_l)l_lek—i in
i=1
which allows us to construct coefficients of the polynomial

K K

PO =] =¢) =D (-D)rerx

i=1 k=1

and the roots (, can then be calculated using standard
polynomial rootfinding methods
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neutrino system: roots {(,}

39 0.25

—
7 P 0.2

5 —

0.15
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5 § 005
K] E 005
24 o1
22|/ 0.15
/ —02

/ —
2 —0.25

0 1 2 3 4 5 0 1 2 3 4 5

/@ /wo

Figure: Roots of the Bethe Ansatz equations: real and imaginary parts of
{Co:a=1,...,k}, as functions of u. Sample solution for k = 2.
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neutrino system: roots {(,}
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Figure: Roots of the Bethe Ansatz equations: real and imaginary parts of
{Co :a=1,...,k}, as functions of u. Sample solution for k = 5.
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