

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

NTO2 Graphite Fin Swelling Analysis

Sujit Bidhar TSD Topical Meeting April 18, 2019

Outline

- Background NTO2 fin
- Empirical modeling of swelling
- Finite element implementation
- Thermal-structural dynamic analysis
 - Failure investigation

Neutrino (NuMI) target

Fractured surface

Bulk swelling ~2% Fractured fins at upstream Beam Power:350 kW, 120GeV Beam Sigma: 1.1 mm

POCO ZXF 5Q Graphite microstructure

Carbon 1971. Vol. 9, pp. 697444.

XRD – Pyrolytic carbon

C-axis expansion is more than a-axis contraction Swelling \rightarrow f(fluence, temperature)

More pronounced at lower temperature

Kelly, J. Vac. Sci. Technol. A 4 (3), 1986

XRD- POCO ZXF5Q

C-axis expansion is more than a-axis contraction

Swelling → Temperature factor

Swelling factor function

Steady state thermal analysis

Steady state thermal analysis

Swelling factor \rightarrow combined function of fluence and temperature

XRD data NTO2

Determining Swelling Coefficient

Swelling factor \rightarrow combined function of fluence and temperature

sw(*u*,*T*) =0.107. exp{ $-0.155 \left(\frac{u}{1.11}\right)^2$ }. { $2x10^{-7} T^3 - 7x10^{-5} T^2 + 1.5x10^{-3} T + 1.0083$ }

Young's Modulus variation with Fluence Ø


```
"E" varies with Ø
Ø varies with location.
```

This two relationship is used to map "E" as a function of location

Young's Modulus variation with location

Model- Geometry

FE Model

FEM Implementation of Empirical Formula

Simulation Flow

Static Structural analysis

🗳 Fermilab

XRD Scan NTO2

on of the (002) crystallographic plane of the top half of the upstream (US) t

@ BNL

Static Structural analysis without swelling formula

All Compressive Doesn't support XRD data

Stress-strain Proton Irradiate POCO ZXF 5Q

PRAB, 20, 071002 (2017)

4/18/2019

‡ Fermilab

Dynamic stresses- Syy

Maximum Shear stress distribution

Crack initiation \rightarrow significant portion of fatigue life High shear stress \rightarrow Fatigue crack initiation σ_{vv} fracture driving force

Graphite has low endurance limit ~14 MPa

Int. J. Fatigue Vol. 20, No. 10, pp. 737–742, 1998

Summary

- Crack seems to initiated near beam and propagated outward
 - Smooth crack surface → brittle fracture
- Swelling raises the stresses close to failure strength
- Beam induced dynamic stresses may lead to fatigue failure
 - High amplitude low frequency (~50 million over 3 years!)
 - Low amplitude high frequency
- Predicted susceptible area
 - Near beam center \rightarrow High Max. shear stress probable crack initiation
 - 2.4mm away from beam→ R<-1 severe form of fatigue

Further work

- Model radiation damage through user-subroutine
 - Knowledge of dislocations distribution
 - Multiscale modelling

