
Saba Sehrish, Fermilab
on behalf of SciSoft Team
LArSoft 2019 Summer Workshop

LArSoft technical details

1

LArSoft repositories
LArSoft products
Setting up and running LArSoft
Contributing to LArSoft

Outline

2

LArSoft conceptual design

Core LArSoft algorithm code
“LArSoft obj suite”

Other s/w
libraries

art
event processing

framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

3

There are 18
repositories
containing LArSoft
code.

The LArSoft code is organized into 18 different repositories that can be loosely
grouped into three categories as shown in the conceptual design.

• Core LArSoft-art interface repositories
– Modules, services, tools

• Core LArSoft algorithm repositories
– Algorithms, providers

• Repositories with interface code to external software

In addition to these three types, every experiment has at least one code repository.

LArSoft repositories

4

The LArSoft code is organized into 18 different repositories that can be loosely
grouped into three categories as shown in the conceptual design.

• Core LArSoft-art interface repositories
– Modules, services, tools

• Core LArSoft algorithm repositories
– Algorithms, providers

• Repositories with interface code to external software

In addition to these three types, every experiment has at least one code repository.

LArSoft repositories

5

You will be using and contributing code to at least
one of these repositories.

Core LArSoft repositories
Name Description

larcore Low level utilities and functions e.g. Geometry services

lardata Data products and other common data structures

larevt Low level algorithm code that use data products

lareventdisplay LArSoft based event display

larsim Simulation code

larreco Primary reconstruction

larana Secondary reconstruction/analysis e.g. PID

larexamples Examples of writing algorithms, data products, etc.

larsoft Top-level repository

6

Interface code repositories

Name Description

larpandora LArSoft interface to the pandora reconstruction package, includes
art modules, etc

larwirecell Interface to wirecell, includes art modules, etc

larpandoracontent Algorithms and tools for larpandora

larg4 Based on artg4tk, includes modules and services for Geant 4

7

Core LArSoft algorithm repositories

Name Description

lardataalg Algorithms shared between larsoft and gallery, larlite, etc.

lardataobj Common data products for reconstruction, analysis, etc shared between
larsoft and gallery, larlite, etc.

larcorealg Core algorithms shared between larsoft and gallery, larlite, etc.

larcoreobj Common data products for reconstruction, analysis, etc shared between
larsoft and gallery, larlite, etc.

larsoftobj Umbrella package/repository

8

LArSoft Products

The build procedure creates and installs a ups product from the code
in each repository.

ups products

What is a ups product?
Collection of software, libraries,
configuration files..., that define a
single instance
Each product is self-contained,
aside from dependencies

What is ups (unix product support)?
ups is a tool that allows multiple
concurrent versions of software
libraries / products to co-exist on a
single machine, and switching
between them as needed

What is ups setup command?
Selects a single instance to use by defining a set of environment variables that
point to the relevant software / libraries. e.g., <product>_DIR, <product>_INC,
<product>_LIB, etc...
The “setup” command also performs “setup” for any required dependencies
setup -B <product name> <version> -q <qualifiers>

10

larsoft ups products
• A LArSoft “release” is a consistent set of LArSoft products built from

tagged versions of code in the repositories
– Implicitly includes corresponding versions of all external dependencies used to build

it.
• larsoftobj

– An umbrella product for the larsoft algorithm repositories
– Setting up larsoftobj sets up all the obj products and other dependencies:

setup -B larsoftobj v08_15_00 -q …
• larsoft_data

– A ups product (not a repository)
– A place for large configuration files

• larsoft
– A “larsoft” umbrella product binds it all together to give it one version, one command:

setup -B larsoft v08_22_00 -q …
– The only thing needed to run LArSoft is access to a tagged release
– There is no need to checkout any code and build it11

Dependencies among larsoft products - simplified version

12

Running LArSoft

• First setup the ups product
source <ups products dir>/setup

– Experiments will have their own setup scripts, so users normally don’t see this
• Then setup larsoft

– setup -B larsoft v08_22_00 -q +e17:+prof
– Now you can use the lar command!

• Some other useful ups commands are
– ups list -aK+ <product name>

• Lists available versions of the given product
– ups active

• Lists all the products that are currently setup
– ups depend <product name> -q <qualifiers>

• List of products dependencies (product doesn’t need to be setup for that)
• ups depend larsoft v08_22_00 -q e17:prof

setup larsoft ups product

14

• First setup the ups product
source <ups products dir>/setup

– Experiments will have their own setup scripts, so users normally don’t see this
• Then setup larsoft

– setup -B larsoft v08_22_00 -q +e17:+prof
– Now you can use the lar command!

• Some other useful ups commands are
– ups list -aK+ <product name>

• Lists available versions of the given product
– ups active

• Lists all the products that are currently setup
– ups depend <product name> -q <qualifiers>

• List of products dependencies (product doesn’t need to be setup for that)
• ups depend larsoft v08_22_00 -q e17:prof

setup larsoft ups product

15

Built with GCC v7.3.0, -std=c++17,
-std=gnu (gfortran)
https://cdcvs.fnal.gov/redmine/projects/cet-is-public/
wiki/AboutQualifiers#Primary-qualifiers

https://cdcvs.fnal.gov/redmine/projects/cet-is-public/wiki/AboutQualifiers#Primary-qualifiers
https://cdcvs.fnal.gov/redmine/projects/cet-is-public/wiki/AboutQualifiers#Primary-qualifiers

• An alias to art - allows LArSoft-customized build and configuration
• Get help: lar -h

• You need to provide a configuration file, you can use any installed fcl file or you
can use your own fcl file and input root file.

The lar command

lar ... -n <num events> -c <fcl configuration> -s <input art/ROOT>

16

• How does art find the fcl file?
FHICL_FILE_PATH environment variable: path to FHiCL directories defined by
the ups products that are setup.

• How do I examine final parameter values for a given fcl file?
– fhicl-expand

Performs all “#include” directives, creates a single output with the result

– fhicl-dump
• Parses the entire file hierarchy, prints the final state all FHiCL parameters
• Using the “--annotate” option, also lists the fcl file + line number at

which each parameter takes its final value
• Requires FHICL_FILE_PATH to be defined

• How do I tell the FHiCL parameter values for a processed file?
– config_dumper

Prints the full configuration for the processes that created the file

The lar runtime configuration

17

• Information on configuration
• Best practices and guidelines explained in presentation by Kyle Knoepfel

– Presentation from 2016 LArSoft Workshop
– Not things that the typical user needs to know, but…

• ...helps to answer why things are this way
– It is required information for people who write modules or production workflows

• E.g., fcl validation features
– Basically calls for highly nested structures that layer overrides

• Bottom line: need good tools to help validate and debug

The lar runtime configuration

18

https://larsoft.org/configuration/
https://indico.fnal.gov/event/11857/session/14/material/1/0

Contributing code to LArSoft

LArSoft code lives in a set of git repositories hosted at Fermilab

Where to find larsoft code?

All are publically accessible at:
http://cdcvs.fnal.gov/projects/<repositoryname>

For read/write access: ssh://p-<repository
name>@cdcvs.fnal.gov/cvs/projects/<repository name>

20

http://cdcvs.fnal.gov/projects/%3Crepository

• Each repository has a similar organization, .e.g. listing on larreco shows:
> ls larreco

larreco

test

ups

CMakeLists.txt

• Each lar* directory has a number of source code directories called “packages”.
• When a new package is added, the best practice is to add tests for the new

code under test/package-name directory.
• If a package directory is in one of the lar* repositories, then it will have modules,

services, tools. If it is in one of the larsoftobj repositories, then it will have
algorithms code in it.

Inside a “lar*” repository

21

For clarity in the
include header paths

• The file CMakeLists.txt is the file used by the build system (cmake) to learn what
steps it should do.

• There is a CMakeLists.txt in every directory/subdirectory; each contains
additional instructions for the build system.

• The top level CMakeLists.txt includes
– minimum version of cmake
– project() name of the project
– include() for additional macros
– find_ups_product()for external dependencies

• Checks if the product with at least the specified version is setup
– add_subdirectory()for all the subdirectories

Inside CMakeLists.txt

22

In the CMakeLists.txt of subdirectories

• simple_plugin to build modules and services with different set of
dependencies

• art_make is a utility that invokes simple_plugin on many modules, services, etc
and it also makes one shared library

• cet_test to specify tests
• Use the following to install headers, fhicl and sources

install_headers()

install_fhicl()

install_source()

More on CMakeLists.txt

23

● make is the standard build tool that
determines dependencies, build order, and
issues the commands.

● make uses Makefile(s)for configuration and
construction.

● cmake is a tool with a simpler configuration
language that will write all of the
Makefile(s)for us.

● cetbuildtools are convenience macros for
cmake(used by art framework).

● mrb for convenience to simplify the building
of multiple products pulled from separate
repositories.

Build process with make

24

● Ninja is a build system alternative to make.
● ninja works on all platforms.
● The advantage of ninja over make is that if

you do an incremental build, ninja can
determine what files need compiling in
practically zero time.

● Cmake knows how to create the build files
for building with ninja.

Build process with ninja

25

• The purpose is to simplify the building of multiple products pulled from
separate repositories.

• Use ups: setup mrb
• Define MRB_PROJECT e.g. export MRB_PROJECT=larsoft
• mrb -h will display a list of all commands that are available with a brief

description
• mrb <command> -h will display help on a particular mrb command, e.g.

mrb newDev -h or setup mrb n -h

mrb - multi-repository build system

26

Main branches
• A develop branch that will have the working

head of the repository.
– Used by all developers.

• A master branch that will have only tagged
releases.

– Used only by the software manager.

Branch model used by LArSoft

27

Supporting branches
• An arbitrary set of feature branches for

ongoing development.
– In most cases, these branches will be in

local repositories, although "publishing"
them to the central repository is allowed
whenever needed

• A release branch for the integration of
specific tagged releases.

– Used or authorized only by the software
manager.

• A hotfix branch is used to develop

patches to tagged releases.
– By software manager

https://nvie.com/posts/a-successful-git-branching-model/

branch model used by LArSoft

28

https://nvie.com/posts/a-successful-git-branching-model/

• Gitflow is really just an abstract idea of a Git workflow described earlier.
– It dictates what kind of branches to set up and how to merge them together.

• The git-flow toolset is an actual command line tool that has an installation
process.

– gitflow is provided as a ups product.
• When the command setup mrb is executed, gitflow gets setup as well.
• LArSoft developers, who will be developing for the project need to work with

feature branches of their, can use gitflow to start and publish new features.

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Using Gitflow for LArSoft

29

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Working area

LArSoft development workflow

30

Central
Repositories

(lar*)

External
Products

Local
Repository

clone, pull
(git, mrb)

push
(git)

ups

Build
area

Local
products

branch checkout,
commit, merge,
feature start, feature
publish
(git, gitflow)

Starting from a new login shell on a machine with ups products directory, set up
the ups environment, and mrb.
• source <products dir>/setup

• setup mrb

• mkdir <working dir>; cd <working dir>

• export MRB_PROJECT=larsoft

• Make a new development area by creating srcs, build, and products
directories in the <working dir>, this is default behavior. -S option can be
used to specify source code directory and -T for build and localProducts
directory
mrb newDev -v vx_x_x -q e17:debug

Setting up your working area

31

Starting from a new login shell on a machine with ups products directory, set up
the ups environment, and mrb.
• source <products dir>/setup

• setup mrb

• mkdir <working dir>; cd <working dir>

• export MRB_PROJECT=larsoft

• Make a new development area by creating srcs, build, and products
directories in the <working dir>, this is default behavior. -S option can be
used to specify source code directory and -T for build and localProducts
directory
mrb newDev -v vx_x_x -q e17:debug

Setting up your working area

32

[ssehrish@grunt1 larsoft_workshop] mrb newDev -v v08_22_00 -q e17:prof

building development area for larsoft v08_22_00 -q e17:prof

MRB_BUILDDIR is /home/ssehrish/larsoft_workshop/build_slf7.x86_64

MRB_SOURCE is /home/ssehrish/larsoft_workshop/srcs

INFO: copying /products/larsoft/v08_22_00/releaseDB/base_dependency_database

IMPORTANT: You must type

 source

/home/ssehrish/larsoft_workshop/localProducts_larsoft_v08_22_00_e17_prof/setup

NOW and whenever you log in

• The following command will define several MRB environment variables and also
the PRODUCTS variable
source localProducts_larsoft_vx_x_x_e17_debug/setup

• An example:
MRB_PROJECT=larsoft

MRB_PROJECT_VERSION=v08_20_00

MRB_QUALS=

MRB_TOP=<full-path-to-working_dir>

MRB_SOURCE=<full-path-to-working_dir>/srcs

MRB_BUILDDIR=<full-path-to-working_dir>/build_slf7.x86_64

MRB_INSTALL=<full-path-to-working_dir>/localProducts_larsoft_...

PRODUCTS=<full-path-to-working_dir>/localProducts_larsoft_:/products

Setting up your working area

33

• The following command will define several MRB environment variables and also
the PRODUCTS variable
source localProducts_larsoft_vx_x_x_e17_debug/setup

• An example:
MRB_PROJECT=larsoft

MRB_PROJECT_VERSION=v08_20_00

MRB_QUALS=

MRB_TOP=<full-path-to-working_dir>

MRB_SOURCE=<full-path-to-working_dir>/srcs

MRB_BUILDDIR=<full-path-to-working_dir>/build_slf7.x86_64

MRB_INSTALL=<full-path-to-working_dir>/localProducts_larsoft_...

PRODUCTS=<full-path-to-working_dir>/localProducts_larsoft_:/products

Setting up your working area

34

[ssehrish@grunt1 larsoft_workshop] source localProducts_larsoft_v08_22_00_e17_prof/setup

MRB_PROJECT=larsoft

MRB_PROJECT_VERSION=v08_22_00

MRB_QUALS=e17:prof

MRB_TOP=/home/ssehrish/larsoft_workshop

MRB_SOURCE=/home/ssehrish/larsoft_workshop/srcs

MRB_BUILDDIR=/home/ssehrish/larsoft_workshop/build_slf7.x86_64

MRB_INSTALL=/home/ssehrish/larsoft_workshop/localProducts_larsoft_v08_22_00_e17_prof

PRODUCTS=/home/ssehrish/larsoft_workshop/localProducts_larsoft_v08_22_00_e17_prof:/products

Getting the source code

• Any specific repository, or whole suite can be checked out. In the following
there are examples of both cases.
cd $MRB_SOURCE

• If you want to checkout larsoft and larsoftobj
mrb g larsoft_suite

mrb g larsoftobj_suite

• mrb g is the short form of mrb gitCheckout.
• Or alternately if you only have to work with one specific repository, .e.g. larreco

mrb g larreco

35

Getting the source code

• Any specific repository, or whole suite can be checked out. In the following
there are examples of both cases.
cd $MRB_SOURCE

• If you want to checkout larsoft and larsoftobj
mrb g larsoft_suite

mrb g larsoftobj_suite

• mrb g is the short form of mrb gitCheckout.
• Or alternately if you only have to work with one specific repository, .e.g. larreco

mrb g larreco

36

[ssehrish@grunt1 larsoft_workshop]$ cd $MRB_SOURCE

[ssehrish@grunt1 srcs]$ mrb g larreco

Cloning into 'larreco'...

remote: Counting objects: 59453, done.

remote: Compressing objects: 100% (27850/27850), done.

remote: Total 59453 (delta 44209), reused 43364 (delta 31507)

Receiving objects: 100% (59453/59453), 28.41 MiB | 4.17 MiB/s, done.

Resolving deltas: 100% (44209/44209), done.

Checking out files: 100% (796/796), done.

NOTICE: Adding larreco to CMakeLists.txt file

Set up the required ups products necessary for building the code: mrbsetenv

Setting up the required ups products

37

[ssehrish@grunt1 srcs]$ mrbsetenv

The working build directory is

/home/ssehrish/larsoft_workshop/build_slf7.x86_64

The source code directory is /home/ssehrish/larsoft_workshop/srcs

----------- check this block for errors -----------------------

--

• Set up the required ups products necessary for building the code.
mrbsetenv

• Now from the build directory, run the mrb build command.
cd $MRB_BUILDDIR

mrb b -jN, where N is the number of cores you want to use for parallel build

• To use ninja, setup ninja first, e.g. setup -B ninja <version>
• Then run the build command

mrb b -jN --generator ninja
• If the build succeeds, run tests, mrb t -jN

Build the checked out code

38

If you want to add code to larreco or modify any existing code in there, you need to
work in a feature branch.

You will need to create a new feature branch for every repository/package in which
you are changing code. Do not change code in “develop” branch!

• Change to the correct directory
cd $MRB_SOURCE

cd larreco

• Start a new feature using git flow
git flow feature start ${USER}_testFeature

• You can see all the feature branches by typing
git branch -a

• git branch will only show the local ones

Working with feature branches

39

If you want to add code to larreco or modify any existing code in there, you need to
work in a feature branch.

You will need to create a new feature branch for every repository/package in which
you are changing code. Do not change code in “develop” branch!

• Change to the correct directory
cd $MRB_SOURCE

cd larreco

• Start a new feature using git flow
git flow feature start ${USER}_testFeature

• You can see all the feature branches by typing
git branch -a

• git branch will only show the local ones

Working with feature branches

40

[ssehrish@grunt1 srcs]$ cd larreco/

[ssehrish@grunt1 larreco]$ git flow feature start ${USER}_testFeature

Switched to a new branch 'feature/ssehrish_testFeature'

Summary of actions:

- A new branch 'feature/ssehrish_testFeature' was created, based on

'develop'

- You are now on branch 'feature/ssehrish_testFeature'

Now, start committing on your feature. When done, use:

 git flow feature finish ssehrish_testFeature

[ssehrish@grunt1 larreco]$ git branch

 develop

* feature/ssehrish_testFeature

 master

Modifying or adding new code to larsoft

• Create a new package directory mkdir larreco/<pkg_dir>
• Update CMakeLists.txt to include the <pkg_dir>
• Make changes and commit to the feature branch

– Create a new file, e.g. my_file.cc, or make changes to an existing file
• Add the file first if it hasn’t already been added to the repository:

git add my_file.cc

• Commit your changes: git commit -m "commit message"
– without -m option, it will open a text editor for a very long commit message

• Add a new directory or multiple files:
git add my_dir

git add file1.cc file2.cc

41

It is important to write new tests for your code and run existing tests to
make sure
• that your code works! (it does what it was programmed to do and it

produces expected results)
• that your code hasn’t broken any other functionality
• to catch problems caused by later changes to the code (Chris J)

Always write tests for your code

42

• You are encouraged to write tests in the test directory for your code.
– Add your test using cet_test macro to CMakeLists.txt e.g.

include(CetTest)

cet_test(HitAnaAlg_test USE_BOOST_UNIT LIBRARIES larreco_HitFinder)

– build and then run tests
cd $MRB_BUILDDIR

mrb test -jN

• For running a specific test, you can use ctest <test name>
• ctest -help lists all the options you can use,

– -V for verbose output
– -R to run tests matching regular expression

• Always test your feature branch for both debug and prof builds

Building and running tests for your code

43

Once your feature branch is ready to be merged into develop:
git flow feature publish ${USER}_testFeature

Making your feature branch public/available

44

• First, setup the ups product
source <products dir>/setup

• Then setup mrb
setup mrb

• Change directory to your existing working area
cd <working area>

• This following command is needed to define all the MRB_* environment
variables, and the PRODUCTS variable.
source local_products/setup

• Need to setup the development environment
mrbsetenv

• Ready to develop and build again!

Returning to your working area from a new login

45

• Commit your local changes to your feature branch
git commit -am "commit message"

• Checkout the head of develop, and make sure you get the updated code
git checkout develop

git pull

• Then checkout your local feature branch, and merge develop into it
git checkout feature/${USER}_testFeature

git merge develop

• Do that for all the feature branches in all the repositories you are working with
• Resolve any conflicts and do a clean build

Update your feature branch when there is a new release

46

mrb z : Delete everything in your build area
mrb zd: Delete everything in both your build and localProducts areas
mrb newDev with -p and -f options:
 -f = use a non-empty directory anyway
 -p = just make the products area (checks that src, build are already there)

mrb uc: Update the master CMakeLists.txt file
mrb uv: Update a product version in product_deps
unsetup_all: unsetup all the products that were setup

A few useful commands

47

• Most changes are coordinated through bi-weekly
coordination meeting to
– make everyone aware of changes and behavior
– make sure there are no conflicts
– make sure there are no breaking changes

• Never merge a breaking change into develop!!!
• Always use feature branches
• Changes are merged by the release manager during the

release process
– Makes sure develop always works

Recommended policy for adding new code to LArSoft

48

• Always discuss any new code
– Ask questions, ask for help even before writing any code, do design discussions

• Some changes can be merged without discussion
– Bug fixes, new code that nothing uses or depends upon
– Other changes that have been agreed to on some other

forums
• However it is a recommended practice to have a

presentation of your code to be merged at the coordination
meeting.

Recommended policy for adding new code to LArSoft

49

Questions?

50

