
Simplify your code
Kyle J. Knoepfel
24 June 2019
LArSoft Workshop 2019

“Keep it simple” … ?

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20192

• Nobody intentionally creates software to be complex, so why does it become so?

“Keep it simple” … ?

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20193

• Nobody intentionally creates software to be complex, so why does it become so?
– The problems to be solved are complex…(not usually the cause)
– Lack of knowledge or experience in designing software.
– Lack of discipline.
– Lack of time to clean things up.
– etc.

“Keep it simple” … ?

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20194

• Nobody intentionally creates software to be complex, so why does it become so?
– The problems to be solved are complex…(not usually the cause)
– Lack of knowledge or experience in designing software.
– Lack of discipline.
– Lack of time to clean things up.
– etc.

• As software projects evolve, they often get larger. This isn’t a bad thing, per se, but
it has consequences:
– The code takes longer to build
– The installed software takes up more space
– The code becomes harder to keep working
– The code becomes hard to understand

“Keep it simple” … ?

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20195

• Unless developers proactively take steps to keep things maintainable, the code
base will continue to grow until it becomes too unwieldy.

• LArSoft contributors often add code, but rarely remove it.

• Today I want to discuss simple ways of cleaning up LArSoft code. Specifically, the
changes today do not relate to software design. They are guidelines that can
be adopted as you go.

• For this talk I will focus primarily on simplifications, not conventions.

“Keep it simple” … ?

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20196

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20197

“I would have written a shorter letter, but I did not have the time.”
- Blaise Pascal

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20198

“I would have written a shorter letter, but I did not have the time.”
- Blaise Pascal

“It takes a lot of hard work to make something simple.”
- Steve Jobs

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20199

“I would have written a shorter letter, but I did not have the time.”
- Blaise Pascal

“It takes a lot of hard work to make something simple.”
- Steve Jobs

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201910

• Please, read this!
• Fermilab library has a few copies.
• Almost 15 years old; still relevant today.

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201911

• Please, read this!
• Fermilab library has a few copies.
• Almost 15 years old; still relevant today.

• Rule 6: Correctness, simplicity, and
clarity come first.

“Fools ignore complexity. Pragmatists suffer it.
Some can avoid it. Geniuses remove it.”

- Alan Perlis

“The importance of a simple design cannot be
overemphasized.”

- Jon Bentley

• Various metrics of estimating how complicated a body of code is.
• A simplistic one is counting lines of code.

Estimating LArSoft’s complexity level

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201912

• Various metrics of estimating how complicated a body of code is.
• A simplistic one is counting lines of code.

Estimating LArSoft’s complexity level

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201913

Date Tag
Lines of
code1

Lines of
comment1

2016-08-11 v06_03_00 251138 95712

2017-07-25 v06_45_00 289929 111898

2018-07-30 v07_00_00 347079 137420

2019-06-08 v08_22_00 354545 141201

1 As computed by the cloc utility.

• Various metrics of estimating how complicated a body of code is.
• A simplistic one is counting lines of code.

• How do we reduce the maintenance burden?

Estimating LArSoft’s complexity level

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201914

Date Tag
Lines of
code1

Lines of
comment1

2016-08-11 v06_03_00 251138 95712

2017-07-25 v06_45_00 289929 111898

2018-07-30 v07_00_00 347079 137420

2019-06-08 v08_22_00 354545 141201

1 As computed by the cloc utility.

• Remove files that you know are not needs. This may take approval from the
collaboration.
– LArSoft took these types of steps last week.

• Examples of this include:
– Code that is not built/installed
– Empty files (or those only with comments)
– Any art module separated into a header and a .cc file (only .cc needed)

Remove unnecessary files

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201915

• I did a test to see how much time it takes to build SimWire_module.cc. I then
systematically removed code to gauge the effect of the headers vs. the code in the
file.

• Due to header guards, it’s difficult to know who contributes the most.
• Bottomline, remove unnecessary headers.

Remove unnecessary header dependencies

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201916

Built code Build time1

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s

1 The build time includes the overhead of running ninja,
as well as preprocessing, compiling, and linking.

• But what’s an unnecessary header?
– Straightforward to .cc files. But if someone is relying on a header dependency in a header

file, then removing an “unused” header can break downstream code. So be it.

• Only include headers in the file that are required for that file.
– No courtesy headers!

Remove unnecessary header dependencies

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201917

// MyService.h
// The following headers are used
#include <vector>

// The following headers are not used
#include "mf/.../MessageLogger.h"
#include "art/.../ServiceHandle.h"

// MyService.h
// The following headers are used
#include <vector>

Discouraged Encouraged

• The SimWire test from earlier:

• All steps included linking time. If we reduce the number of linked libraries…

Remove unnecessary link-time dependencies

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201918

Built code Build time1

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s

• The SimWire test from earlier:

• Reducing number of linked libraries generally results in minor savings in build time.
The benefits are seen elsewhere (library sizes, run-time overhead, maintenance).

Remove unnecessary link-time dependencies

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201919

Built code Build time1

Entire file 11.3 s
Only headers 8.0 s
Only art headers 5.0 s
Empty file 0.4 s
Empty file + only art libraries 0.3 s

Remove unnecessary functions

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201920

• A common pattern:

Remove unnecessary functions

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201921

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);
~MyProducer();

private:
void produce(art::Event&) override;
void beginJob() override;
void endJob() override;

};

• A common pattern:

• And then:

Remove unnecessary functions

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201922

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);
~MyProducer();

private:
void produce(art::Event&) override;
void beginJob() override;
void endJob() override;

};

MyProducer::~MyProducer() {}
void MyProducer::beginJob() {}
void MyProducer::endJob() {}

• If there is no work to be done in the
following functions, remove them:
– beginJob
– beginRun
– beginSubRun
– endSubRun
– endRun
– endJob
– Destructor

Remove unnecessary functions

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201923

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);
~MyProducer();

private:
void produce(art::Event&) override;
void beginJob() override;
void endJob() override;

};

• If there is no work to be done in the
following functions, remove them:
– beginJob
– beginRun
– beginSubRun
– endSubRun
– endRun
– endJob
– Destructor

Remove unnecessary functions

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201924

• If there is no work to be done in the
following functions, remove them:
– beginJob
– beginRun
– beginSubRun
– endSubRun
– endRun
– endJob
– Destructor

Remove unnecessary functions

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201925

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);

private:
void produce(art::Event&) override;

};

class MyProducer : public art::EDProducer {
public:

MyProducer(fhicl::ParameterSet const&);
- ~MyProducer();

private:
void produce(art::Event&) override;

- void beginJob() override;
- void endJob() override;
};

• Consider this code:

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201926

class MyProducer {
LargeObject obj_;
unsigned counter_;
unsigned importantConstant_;

public:

MyProducer(ParameterSet const& pset)
{

reconfigure(pset);
}

void reconfigure(ParameterSet const& p)
{

obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;

}
};

• Consider this code:

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201927

class MyProducer {
LargeObject obj_; // Only const access needed
unsigned counter_;
unsigned importantConstant_; // Only const access needed

public:

MyProducer(ParameterSet const& pset)
{

reconfigure(pset);
}

void reconfigure(ParameterSet const& p)
{

obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;

}
};

class MyProducer {
LargeObject obj_; // Only const access needed
unsigned counter_;
unsigned importantConstant_; // Only const access needed

public:

MyProducer(ParameterSet const& pset)
{

reconfigure(pset);
}

void reconfigure(ParameterSet const& p)
{

obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;

}
};

• Consider this code:

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201928

LargeObject() called before
reconfigure is called

class MyProducer {
LargeObject obj_; // Only const access needed
unsigned counter_;
unsigned importantConstant_; // Only const access needed

public:

MyProducer(ParameterSet const& pset)
{

reconfigure(pset);
}

void reconfigure(ParameterSet const& p)
{

obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;

}
};

• Consider this code:

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201929

LargeObject() called before
reconfigure is called

LargeObject(string const&)
called

class MyProducer {
LargeObject obj_; // Only const access needed
unsigned counter_;
unsigned importantConstant_; // Only const access needed

public:

MyProducer(ParameterSet const& pset)
{

reconfigure(pset);
}

void reconfigure(ParameterSet const& p)
{

obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;

}
};

• Consider this code:

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201930

LargeObject() called before
reconfigure is called

LargeObject(string const&)
called

To boot: module reconfiguration is not supported by art

• Consider this code:

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201931

class MyProducer {
LargeObject obj_;
unsigned counter_;
unsigned importantConstant_;

public:

MyProducer(ParameterSet const& pset)
{

reconfigure(pset);
}

void reconfigure(ParameterSet const& p)
{

obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;

}
};

LargeObject() called before
reconfigure is called

LargeObject(string const&)
called

Use the class’s initialization list!

Using the initialization list

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201932

class MyProducer {
LargeObject obj_;
unsigned counter_;
unsigned importantConstant_;

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}
, counter{0}
, importantConstant_{42}

{}
};

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201933

class MyProducer {
LargeObject obj_;
unsigned counter_;
unsigned importantConstant_;

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}
, counter{0}
, importantConstant_{42}

{}
};

Using the initialization list
• obj_ is constructed once

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201934

class MyProducer {
LargeObject const obj_;
unsigned counter_;
unsigned const importantConstant_;

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}
, counter{0}
, importantConstant_{42}

{}
};

Using the initialization list
• obj_ is constructed once
• obj_ and
importantConstant_
can now be const

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201935

class MyProducer {
LargeObject const obj_;
unsigned counter_{0};
unsigned const importantConstant_{42};

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}

{}
};

Using the initialization list
• obj_ is constructed once
• obj_ and
importantConstant_
can now be const

• Use default values to
reduce the number of
required arguments

To reconfigure or not to reconfigure…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201936

class MyProducer {
LargeObject const obj_;
unsigned counter_{0};
unsigned const importantConstant_{42};

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}

{}
};

Using the initialization list
• obj_ is constructed once
• obj_ and
importantConstant_
can now be const

• Use default values to
reduce the number of
required arguments

Get rid of module reconfigure functions.

There are some places where preprocessor macros are being used when they
shouldn’t be:

• Header guards are for headers!
– Do not place header guards in implementation (.cc) files.

• Do not define constants with macros
– BAD: #define NUM_BEETHOVEN_SYMPHONIES 9
– GOOD: constexpr unsigned int num_beethoven_symphonies{9};

• ROOT no longer supports the __GCCXML__ preprocessor guard. If you absolutely
need to hide code from the dictionary generator, use __ROOTCLING__.

Remove inappropriate preprocessor use

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201937

• Defining art modules

• Iterating over std::map entries

More simplifications

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201938

- namespace something {
- DEFINE_ART_MODULE(MyModule)
- }
+ DEFINE_ART_MODULE(something::MyModule)

- for (auto const& pr : some_map) {
- auto const& key = pr.first;
- auto const& value = pr.second;
- ...
- }
+ for (auto const& [key, value] : some_map) {
+ ...
+ }

• Creating std::unique_ptrs

• Nested namespaces

More simplifications

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201939

- std::unique_ptr<MyType> p(new MyType(arg1, arg2, ...));
- auto p = std::unique_ptr<MyType>(new MyType(arg1, arg2, ...));
+ auto p = std::make_unique<MyType>(arg1, arg2, ...);

- namespace a {
- namespace b {
- ...
- }
- }
+ namespace a::b {
+ ...
+ }

• Much of LArSoft has been built on top of art and canvas

• This makes sense for the components that are meant to interact with a framework

• LArSoft provides facilities that are not intrinsically connected to any framework
– I encourage you to reduce your reliance on art- or canvas-provided interface.
– It is a maintenance burden, and who knows where frameworks will be n years from now

LArSoft’s coupling to art

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201940

• Much of LArSoft has been built on top of art and canvas

• This makes sense for the components that are meant to interact with a framework

• LArSoft provides facilities that are not intrinsically connected to any framework
– I encourage you to reduce your reliance on art- or canvas-provided interface.
– It is a maintenance burden, and who knows where frameworks will be n years from now

• Practical suggestion: no ServiceHandles outside of art-supported plugins
– Providers should never create ServiceHandles
– Algorithms in larreco/RecoAlg should never create ServiceHandles
– etc.

LArSoft’s coupling to art

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201941

• Making things simpler takes a lot of effort.

• Ways to get there:
– Remove unnecessary files
– Remove unnecessary header dependencies
– Remove unnecessary link-time dependencies
– Remove unnecessary functions/classes
– Use modern C++ facilities to simplify your code
– Reduce coupling to art

• Come talk to the SciSoft team. We’re here to help you.

Takeaways

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201942

