("E % U.S. DEPARTMENT OF Office of

2% Fermilab {@)ENERGY | sconce

Simplify your code

Kyle J. Knoepfel
24 June 2019
LArSoft Workshop 2019

“Keep it simple” ... ?

2 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

“Keep it simple” ... ?

* Nobody intentionally creates software to be complex, so why does it become so?

2% Fermilab

3 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

“Keep it simple” ... ?

« Nobody intentionally creates software to be complex, so why does it become so?

4

— The problems to be solved are complex...(not usually the cause)
Lack of knowledge or experience in designing software.

Lack of discipline.
Lack of time to clean things up.

etc.

6/25/19

Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

“Keep it simple” ... ?

« Nobody intentionally creates software to be complex, so why does it become so?
— The problems to be solved are complex...(not usually the cause)
— Lack of knowledge or experience in designing software.
— Lack of discipline.
— Lack of time to clean things up.
— efc.

» As software projects evolve, they often get larger. This isn’t a bad thing, per se, but
it has consequences:

— The code takes longer to build

— The installed software takes up more space
— The code becomes harder to keep working
— The code becomes hard to understand

2% Fermilab

5 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

“Keep it simple” ... ?

Unless developers proactively take steps to keep things maintainable, the code
base will continue to grow until it becomes too unwieldy.

LArSoft contributors often add code, but rarely remove it.

Today | want to discuss simple ways of cleaning up LArSoft code. Specifically, the
changes today do not relate to software design. They are guidelines that can
be adopted as you go.

For this talk | will focus primarily on simplifications, not conventions.

2% Fermilab

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

7

“l would have written a shorter letter, but | did not have the time.”
- Blaise Pascal

2% Fermilab

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

8

“l would have written a shorter letter, but | did not have the time.”
- Blaise Pascal

“It takes a lot of hard work to make something simple.”
- Steve Jobs

2% Fermilab

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

9

“l would have written a shorter letter, but | did not have the time.”
- Blaise Pascal

“It takes a lot of hard work to make something simple.”
- Steve Jobs

Home » Blog » 2018 » September » CppCon 2018: Simplicity: Not Just for Beginners—Kate Gregory

CppCon 2018: Simplicity: Not Just for Beginners—Kate Gregory

FEATURES

2% Fermilab

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

* Please, read this!
« Fermilab library has a few copies.
C++ Coding Standards - Almost 15 years old; still relevant today.

101 Rules, Guidelines, and Best Practices

Herb Sutter
Andrei Alexandrescu

C++ In-Depth Series + Bjarne Stroustrup

2% Fermilab

10 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

* Please, read this!
« Fermilab library has a few copies.
C++ Coding Standards - Almost 15 years old; still relevant today.

101 Rules, Guidelines, and Best Practices

* Rule 6: Correctness, simplicity, and

. _Herb Sutter clarity come first.
Andreil Alexandrescu

“Fools ignore complexity. Pragmatists suffer it.

Some can avoid it. Geniuses remove it.”
- Alan Perlis

“The importance of a simple design cannot be
overemphasized.”
- Jon Bentley

-

C++ In-Depth Series « Bjarne Stroustrup

2% Fermilab

11 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Estimating LArSoft’s complexity level

« Various metrics of estimating how complicated a body of code is.
« A simplistic one is counting lines of code.

2% Fermilab

12 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Estimating LArSoft’s complexity level

« Various metrics of estimating how complicated a body of code is.
« A simplistic one is counting lines of code.

13

6/25/19

Date Tag

Lines of
code’

Lines of
comment’

2016-08-11 v06_03_00 251138 95712
2017-07-25 V06 45 00 289929 111898
2018-07-30 v07 00 00 347079 137420
2019-06-08 V08 22 00 354545 141201

" As computed by the c loc ultility.

Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

Estimating LArSoft’s complexity level

« Various metrics of estimating how complicated a body of code is.
« A simplistic one is counting lines of code.

Date Tag

Lines of
code’

Lines of
comment’

2016-08-11 v06_03_00 251138 95712
2017-07-25 V06 45 00 289929 111898
2018-07-30 v07 00 00 347079 137420
2019-06-08 V08 22 00 354545 141201

" As computed by the c loc ultility.

« How do we reduce the maintenance burden?

14

6/25/19

Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

Remove unnecessary files

« Remove files that you know are not needs. This may take approval from the
collaboration.

— LArSoft took these types of steps last week.

« Examples of this include:
— Code that is not built/installed
— Empty files (or those only with comments)
— Any art module separated into a header and a .cc file (only .cc needed)

2% Fermilab

15 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary header dependencies

| did a test to see how much time it takes to build SimWire_module.cc. | then
systematically removed code to gauge the effect of the headers vs. the code in the

file.
Built code Build time!

Entire file 11.3s
Only headers 8.0s
Only art headers 5.0s
Empty file 04s

' The build time includes the overhead of running ninja,
as well as preprocessing, compiling, and linking.

« Due to header guards, it’s difficult to know who contributes the most.

« Bottomline, remove unnecessary headers.
3£ Fermilab

16 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary header dependencies

« But what’s an unnecessary header?

— Straightforward to .cc files. But if someone is relying on a header dependency in a header
file, then removing an “unused” header can break downstream code. So be it.

« Only include headers in the file that are required for that file.
— No courtesy headers!

Discouraged Encouraged
// MyService.h // MyService.h
// The following headers are used // The following headers are used
#include <vector> #include <vector>

// The following headers are not used
#include "mf/.../MessagelLogger.h"
#include "art/.../ServiceHandle.h"

2% Fermilab

17 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary link-time dependencies

e The SimWire test from earlier:

Built code Build time!

Entire file 11.3s
Only headers 8.0s
Only art headers 5.0s
Empty file 04s

 All steps included linking time. If we reduce the number of linked libraries...

2% Fermilab

18 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary link-time dependencies

e The SimWire test from earlier:

Built code Build time!

Entire file 11.3 s
Only headers 8.0s
Only art headers 5.0s
Empty file 04s
Empty file + only art libraries 03s

« Reducing number of linked libraries generally results in minor savings in build time.
The benefits are seen elsewhere (library sizes, run-time overhead, maintenance).

2% Fermilab

19 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary functions

2% Fermilab

20 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary functions

« A common pattern:

class MyProducer : public art::EDProducer {
public:
MyProducer(fhicl::ParameterSet consté&);
~MyProducer();

private:
void produce(art::Event&) override;
void beginJob() override;
void endJob() override;

}s

2% Fermilab

21 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary functions

« A common pattern:

class MyProducer : public art::EDProducer {
public:
MyProducer(fhicl::ParameterSet consté&);
~MyProducer();

private:
void produce(art::Event&) override;
void beginJob() override;
void endJob() override;

}s

 And then:

MyProducer: :~MyProducer() {}
void MyProducer::begindob() {}
void MyProducer::endJob() {}

2% Fermilab

22 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Remove unnecessary functions

* If there is no work to be done in the
following functions, remove them:

23

beginJob
beginRun
beginSubRun
endSubRun
endRun

endJob
Destructor

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

Remove unnecessary functions

24

If there is no work to be done in the
following functions, remove them:

beginJob
beginRun
beginSubRun
endSubRun
endRun
endJob
Destructor

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

class MyProducer : public art::EDProducer {
public:
MyProducer(fhicl::ParameterSet const&);
~MyProducer();

private:

void produce(art::Event&) override;
void beginJob() override;

void endJob() override;

};

2% Fermilab

Remove unnecessary functions

25

If there is no work to be done in the
following functions, remove them:

beginJob
beginRun
beginSubRun
endSubRun
endRun
endJob
Destructor

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

class MyProducer : public art::EDProducer {
public:
MyProducer(fhicl::ParameterSet const&);
~MyProducer();

private:

void produce(art::Event&) override;
void beginJob() override;

void endJob() override;

};

class MyProducer : public art::EDProducer {
public:
MyProducer(fhicl::ParameterSet const&);

private:
void produce(art::Event&) override;

b

2% Fermilab

To reconfigure or not to reconfigure...

26

Consider this code:

class MyProducer {
LargeObject obj_;
unsigned counter_;
unsigned importantConstant_;

public:
MyProducer(ParameterSet const& pset)
{
reconfigure(pset);
}
void reconfigure(ParameterSet const& p)
{
obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;
}
¥

2% Fermilab

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

» Consider this code: class MyProducer {
LargeObject obj_; // Only const access needed
unsigned counter_;

unsigned importantConstant_; // Only const access needed

public:
MyProducer(ParameterSet const& pset)
{
reconfigure(pset);
}
void reconfigure(ParameterSet const& p)
{
obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;
}
¥

2% Fermilab

27 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

» Consider this code: class MyProducer {
LargeObject obj_; // Only const access needed

unsigned counter_;
unsigned importantConstant_; // Only const access needed

public:
LargeObject() called before MyProducer(ParameterSet const& pset)
reconfigure is called — A

reconfigure(pset);

}

void reconfigure(ParameterSet const& p)

{
obj_ = LargeObject{p.get<std::string>("some_label")};
counter_ = 0;
importantConstant_ = 42;

}

i

2% Fermilab

28 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

» Consider this code: class MyProducer {
LargeObject obj_; // Only const access needed

unsigned counter_;
unsigned importantConstant_; // Only const access needed

public:
LargeObject() called before MyProducer(ParameterSet const& pset)
reconfigure is called — A

reconfigure(pset);

}
void reconfigure(ParameterSet const& p)
. . {
LargeObject(string const&) 1 — opj_ = LargeObject{p.get<std::string>("some label")};
called counter_ = 0;
importantConstant_ = 42;
}
¥

2% Fermilab

29 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

» Consider this code: class MyProducer {
LargeObject obj_; // Only const access needed

unsigned counter_;
unsigned importantConstant_; // Only const access needed

public:
LargeObject() called before MyProducer(ParameterSet const& pset)
reconfigure is called — A

reconfigure(pset);

}
void reconfigure(ParameterSet const& p)
. . {
LargeObject(string const&) 1 — opj_ = LargeObject{p.get<std::string>("some label")};
called counter_ = 0;
importantConstant_ = 42;
}
¥

To boot: module reconfiguration is not supported by art
2& Fermilab

30 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

» Consider this code: class MyProducer {
LargeObject obj_;

unsigned counter_;

unsigned importantConstant_;

public:
LargeObject() called before MyProducer(ParameterSet const& pset)
reconfigure is called — A

reconfigure(pset);

}
void reconfigure(ParameterSet const& p)
. . {
LargeObject(string const&) 1 — opj_ = LargeObject{p.get<std::string>("some label")};
called counter_ = 0;
importantConstant_ = 42;
}
¥

Use the class’s initialization list!
£& Fermilab

31 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

Using the initialization list class MyProducer {

LargeObject obj_;

unsigned counter_;

unsigned importantConstant_;

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}
, counter{0}
, importantConstant_{42}
{}
g

2% Fermilab

32 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

Using the initialization list class MyProducer {
L LargeObject obj_;
« 0bj_ is constructed once unsigned counter_;

unsigned importantConstant_;
public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}
, counter{0}
, importantConstant_{42}
{}
g

2% Fermilab

33 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

Using the initialization list class MyProducer {
LargeObject const obj_;

« 0bj_ is constructed once unsigned counter_;
unsigned const importantConstant_;

 obj_and
importantConstant_ | public:
can now be const MyProducer(ParameterSet const& pset)

: obj_{p.get<std::string>("some_label")}
, counter{0}
, importantConstant_{42}
{}
};

2% Fermilab

34 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

To reconfigure or not to reconfigure...

Using the initialization list

« 0bj_ is constructed once

35

obj_ and
importantConstant_
can now be const

Use default values to
reduce the number of
required arguments

class MyProducer {
LargeObject const obj_;
unsigned counter_{0};
unsigned const importantConstant_{42};

public:

MyProducer(ParameterSet const& pset)

: obj_{p.get<std::string>("some_label")}
{}
i

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

To reconfigure or not to reconfigure...

Using the initialization list

« 0bj_ is constructed once

36

obj_ and
importantConstant_
can now be const

Use default values to
reduce the number of
required arguments

class MyProducer {
LargeObject const obj_;
unsigned counter_{0};
unsigned const importantConstant_{42};

public:

MyProducer(ParameterSet const& pset)

: obj_{p.get<std::string>("some_label")}
{}
i

Get rid of module reconfigure functions.

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

2% Fermilab

Remove inappropriate preprocessor use

There are some places where preprocessor macros are being used when they
shouldn’t be:

* Header guards are for headers!
— Do not place header guards in implementation (.cc) files.

* Do not define constants with macros
— BAD: #define NUM_BEETHOVEN_ SYMPHONIES 9
— GOOD: constexpr unsigned int num_beethoven_symphonies{9};

« ROOT no longer supports the __GCCXML__ preprocessor guard. If you absolutely
need to hide code from the dictionary generator, use __ROOTCLING__.

2% Fermilab

37 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

More simplifications

« Defining art modules

namespace something {
DEFINE_ART_MODULE(MyModule)

}
DEFINE_ART_MODULE(something: :MyModule)

+

* lterating over std: :map entries

for (auto const& pr : some_map) {
auto const& key = pr.first;
auto const& value = pr.second;

,

for (auto const& [key, value] : some_map) {

ar ar ar

,

2% Fermilab

38 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

More simplifications

« Creating std: :unique_ptrs

- std::unique_ptr<MyType> p(new MyType(argl, arg2, ...));
- auto p = std::unique_ptr<MyType>(new MyType(argl, arg2, ...));
+ auto p = std::make_unique<MyType>(argl, arg2, ...);

« Nested namespaces

namespace a {
namespace b {

S
¥

namespace a::b {

,

+ + +

2% Fermilab

39 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

LArSoft’s coupling to art
« Much of LArSoft has been built on top of art and canvas
» This makes sense for the components that are meant to interact with a framework

« LArSoft provides facilities that are not intrinsically connected to any framework
— | encourage you to reduce your reliance on art- or canvas-provided interface.
— It is a maintenance burden, and who knows where frameworks will be n years from now

2% Fermilab

40 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

LArSoft’s coupling to art

« Much of LArSoft has been built on top of art and canvas

» This makes sense for the components that are meant to interact with a framework

« LArSoft provides facilities that are not intrinsically connected to any framework
— | encourage you to reduce your reliance on art- or canvas-provided interface.
— It is a maintenance burden, and who knows where frameworks will be n years from now

 Practical suggestion: no ServiceHandles outside of art-supported plugins

— Providers should never create ServiceHandles
— Algorithms in Llarreco/RecoAlg should never create ServiceHandles

— etc.

2% Fermilab

41 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

Takeaways

« Making things simpler takes a lot of effort.

* Ways to get there:
— Remove unnecessary files
— Remove unnecessary header dependencies
— Remove unnecessary link-time dependencies
— Remove unnecessary functions/classes
— Use modern C++ facilities to simplify your code
— Reduce coupling to art

« Come talk to the SciSoft team. We’re here to help you.

2% Fermilab

42 6/25/19 Kyle J. Knoepfel | LArSoft Workshop 2019

