
Multi-threaded art

Kyle J. Knoepfel
25 June 2019
LArSoft Workshop 2019

• art’s path processing
– Consequences

• art’s multi-threading behavior
– Command-line invocation
– Guarantees and limitations
– Kinds of modules

• Illustrations
– Services

• Guidance moving to multi-threaded art programs

Outline

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20192

Processing a data-containment level (e.g. Event)

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20193

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}

}
analyzers: {

plotHits: {...}
}

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Path declarations

Module declarations

Processing a data-containment level (e.g. Event)

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20194

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}

}
analyzers: {

plotHits: {...}
}

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

Processing a data-containment level (e.g. Event)

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20195

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}

}
analyzers: {

plotHits: {...}
}

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

• The order in which trigger
paths are executed is
unspecified (single-threaded).

• In MT art trigger paths will be
executed simultaneously.

• Modules in a trigger path are
executed in the order specified.

• End paths are always
processed after all trigger paths.

• A module is executed once per
event.

Processing a data-containment level (e.g. Event)

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20196

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
makeHits: {...}
makeShowers: {...}
produceG4Steps: {...}

}
analyzers: {

plotHits: {...}
}

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

• The order in which trigger
paths are executed is
unspecified (single-threaded).

• In MT art trigger paths will be
executed simultaneously.

• Modules in a trigger path are
executed in the order specified.

• End paths are always
processed after all trigger paths.

• A module is executed once per
event.Heeding these facts is essential for successful use of art 3.

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

Consequences of art’s guarantees

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20197

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

• The following is a configuration error (heuristically):

Consequences of art’s guarantees

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20198

physics: {
producers: {
p1: { produces: ["int", ""] }
p2: { consumes: ["int", "p1::current_process"] }

}
tp1: [p1]
tp2: [p2]

}

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

• The following is also a configuration error (heuristically):

Consequences of art’s guarantees

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 20199

physics: {
producers: {
p1: { produces: ["int", ""] }
p2: { produces: ["int", "instanceName"] }
readThenMake: {
consumesMany: ["int"] // calls getMany

}
}
tp1: [p1, readThenMake]
tp2: [p2, readThenMake]

}

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

• The following is also a configuration error (heuristically):

Consequences of art’s guarantees

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201910

physics: {
producers: {
p1: { produces: ["int", ""] }
p2: { produces: ["int", "instanceName"] }
readThenMake: {
consumesMany: ["int"] // calls getMany

}
}
tp1: [p1, readThenMake]
tp2: [p2, readThenMake]

}

art 3 catches these errors if you use the consumes interface.
Module readThenMake on paths tp1, tp2 depends on

Module p2 on path tp2

art’s multi-threading behavior

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201911

art’s multi-threading behavior

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201912

https://cdcvs.fnal.gov/redmine/projects/art/wiki#Multithreaded-processing-as-of-art-3

• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

• Each schedule processes one event at a time.

The design

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201913

Run 1 . . .
Run 1

Run 1

Run 4

Run 2

Run 3

Run 4

Run 4

. . .
. . .

Begin
Job

Our goal:

• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

• Each schedule processes one event at a time.

The design

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201914

Currently implemented:

1 4 6 9

2 5

3

7 8

10

11

12

Begin
R1

Begin
SR1

End
SR1

End
R1

Begin
R2

Begin
SR 1

1

2

4

5

3

. . .
. . .

Begin
Job

• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

• Each schedule processes one event at a time.

The design

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201915

Currently implemented:

1 4 6 9

2 5

3

7 8

10

11

12

Begin
R1

Begin
SR1

End
SR1

End
R1

Begin
R2

Begin
SR 1

1

2

4

5

3

. . .
. . .

Begin
Job

. . .

• Largely based off of CMSSW’s design
– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops (schedules) and (optionally)
the maximum number of threads that the process can use.

• Each schedule processes one event at a time.
• Different modules can be run in parallel on the same event.
• Users are allowed to use TBB’s parallel facilities within their own modules.

The design

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201916

• art 3 supports concurrent processing of events.
– The number of events to process concurrently is specified by the number of schedules
– The user can optionally specify the number of threads.

• The user opts in to concurrent processing.

Multi-threaded event-processing

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201917

• art 3 supports concurrent processing of events.
– The number of events to process concurrently is specified by the number of schedules
– The user can optionally specify the number of threads.

• The user opts in to concurrent processing.

• In a grid environment, number of threads is limited to the number of CPUs
configured for the HTCondor slot (art adjusts the number of threads).

Multi-threaded event-processing

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201918

Command (nSch, nThr)

art -c <config> … (1, 1)
art -c <config> -j 1 … (1, 1)
art -c <config> -j 4 … (4, 4)
art -c <config> -j 0 … (nproc, nproc)
art -c <config> --nschedules 1 --nthreads 4 … (1, 4)

• Processing of an event happens on one and only one schedule.
• For a given trigger path, modules are processed in the order specified.
• A module shared among paths will be processed only once per event.
• Product insertion into the event is thread-safe.
• Product retrieval from the event is thread-safe.
• Provenance retrieval from the event is thread-safe.
• All modules and services provided by art are thread-safe.

– For TFileService, the user is required to specify additional serialization.

art 3 guarantees

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201919

• Only events within the same SubRun are processed concurrently.
• Analyzers and output modules do not run concurrently.

• Other details
– MixFilter modules are legacy modules.
– Secondary input-file reading is allowed only for 1 schedule and 1 thread.
– TFileService file-switching is allowed only for 1 schedule and 1 thread.

art 3 limitations—Primum non nocere (first, to do no harm)

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201920

• art guarantees that any currently-existing modules are usable in a multi-threaded
execution of art.
– No multi-threading benefits are realized with legacy modules

• To take advantage of art’s multi-threading capabilities, users will need to choose
the kind of module they use:

– Shared module: sees all events—calls can be serialized or asynchronous.

– Replicated module: for a configured module, one copy of that module is created per
schedule—each module copy sees one event at a time. Use if moving to a concurrent,
shared module is not feasible.

Kinds of modules in art 3

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201921

Time structure for calling modules
Single schedule

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201922

1 2 3
Begin
SR1

End
SR1

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201923

SubRun Event

m1

m2

m3

1 2 3
Begin
SR1

End
SR1Time structure for calling modules

Single schedule

Shared modules
Modules shared across schedules

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201924

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201925

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201926

SubRun
Event

Event

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201927

SubRun
Event

Event

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

Data races are now possible.

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201928

SubRun
Event

Event

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

If the state of one of the
modules is updated when
simultaneously processing
two events, there can be
a data race.

What are some ways
to handle this?

1

2

Using a legacy module

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201929

class HistMaker : public art::EDProducer {
public:
explicit HistMaker(Parameters const& p) : EDProducer{p}
{}

void produce(Event& e) override {} // Called serially wrt. all
// serialized modules

};

• Legacy modules imply maximum serialization.
– Legacy modules cannot be run in parallel with any other legacy modules or any serialized

shared modules.
• With art 3, any new modules should not be legacy modules.
• The better solution is to use a SharedModule, which can be serialized only wrt

itself.

Use a shared module

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201930

• But there can be other data race problems.

class HistMaker : public art::SharedProducer {
public:
explicit HistMaker(Parameters const& p,

ProcessingFrame const&) : SharedProducer{p}
{
serialize<InEvent>(); // Declaration to process

// one event at a time.
}

// Called serially wrt. itself
void produce(Event&, ProcessingFrame const&) override;

};

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201931

SubRun
Event

Event

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

If two modules are processing
different events at the same
time, but they are using a
common resource, there
can be a data race.1

2 How do we avoid such a data
race?

Serialized module due to shared resource

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201932

class Fitter : public art::SharedProducer {
public:
explicit Fitter(Parameters const& p,

ProcessingFrame const& frame) : SharedProducer{p}
{
serialize<InEvent>("TCollection"); // Declare the common resource

}

// Called serially wrt. other modules that use TCollection
void produce(Event& e) override;

};

Serialized module due to shared resource

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201933

Suppose you want to call TCollection::(Set|Get)CurrentCollection
First step: please don’t. This is only illustrating a thread-unsafe interface.

class Fitter : public art::SharedProducer {
public:
explicit Fitter(Parameters const& p,

ProcessingFrame const& frame) : SharedProducer{p}
{
serialize<InEvent>("TCollection"); // Declare the common resource

}

// Called serially wrt. other modules that use TCollection
void produce(Event& e) override;

};

Serialized module due to shared resource

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201934

If you can guarantee no data races…

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201935

class HitMaker : public art::SharedProducer {
public:
explicit HitMaker(Parameters const& p ,

ProcessingFrame const&) : SharedProducer{p}
{
async<InEvent>();

}

void produce(Event&) override; // Called asynchronously
};

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201936

Replicated modules
One module per schedule

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201937

Replicated modules
One module per schedule

• Sometimes the easiest way to gain multi-threading benefits is to replicate modules
across schedules—avoids data races from sharing a module.

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201938

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201939

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

SubRun
Event

Event

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201940

Time structure for calling modules
Multiple schedules

1 4

2 3

Begin
SR1

End
SR1

SubRun
Event

Event

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

Consequence: each module
copy does not see all events.

Replicated producer

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201941

• Do not use a replicated producer is you need to use a shared resource.
• For art 3.0, replicated modules cannot produce Run and SubRun data products.

class Accumulator : public art::ReplicatedProducer {
public:
explicit Accumulator(Parameters const& p,

ProcessingFrame const& frame)
: ReplicatedProducer{p, frame}

{}

// Each module copy sees one event at a time
void produce(Event&, ProcessingFrame const&) override;

};

• Until now, users have been able to create ServiceHandles from anywhere; this
pattern is changing.

• The recommended pattern is for art users to create service handles from the
passed-in ProcessingFrame object.

• This will eventually allow for replicated services, akin to replicated modules.

What is the ProcessingFrame type?

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201942

“O art::ServiceHandle<T>{}, thou time is short.”
- Anonymous

void HitMaker::beginRun(Run&, ProcessingFrame const& frame)
{
auto h1 = frame.serviceHandle<Calib>(); // => ServiceHandle<Calib>
auto h2 = frame.serviceHandle<Calib const>(); // => ServiceHandle<Calib const>

}

Services

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201943

• Services are globally shared objects (across schedules and threads).
– They can be accessed from anywhere through a ServiceHandle.
– They must be thread-safe.

Services

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201944

• Services are globally shared objects (across schedules and threads).
– They can be accessed from anywhere through a ServiceHandle.
– They must be thread-safe.

LArSoft’s prevalent use of mutable services is the
primary limitation in realizing multi-threading benefits.

Services

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201945

• Services are globally shared objects (across schedules and threads).
– They can be accessed from anywhere through a ServiceHandle.
– They must be thread-safe.

• In order to use a service in an art job, with more than one schedule/thread enabled,
the service must be GLOBAL (SHARED, for art 3.03).

• LEGACY services are supported only in single-schedule/single-threaded mode.
---- Configuration BEGIN

The service 'MyService' is a legacy service,
which can be used with only one schedule and one thread.
This job uses 2 schedules and 2 threads.
Please reconfigure your job to use only one schedule/thread.

---- Configuration END

LArSoft’s prevalent use of mutable services is the
primary limitation in realizing multi-threading benefits.

• ROOT’s thread-safety flag has been enabled by art.
– Allows (e.g.) multiple ROOT files to be opened in parallel.

• ROOT’s implicit MT flag has not been enabled by art.
• All interactions art has with ROOT are serialized.

– Input-file reading
– Output-file writing
– To use TFileService, you must use a shared module that calls the appropriate
serialize function.

ROOT and MT

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201946

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201947

Guidance moving to art 3

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201948

Guidance moving to art 3
Recompile/rerun jobs with 1 schedule/1 thread

(default)

Add consumes statements to modules
(use -M program option for help)

Recompile/rerun jobs with more than 1
schedule/1 thread

Recompile/rerun jobs with 1 schedule/1 thread
and use --errorOnMissingConsumes

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201949

Guidance moving to art 3

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

• Determine what kind of module you need.
– Producer, filter, or analyzer?
– Do you need to create (Sub)Run products?
– Do you need to see every event?
– Do you need to call an external library that is not

thread-safe?
– Do you have mutable data members for which

operations are not thread-safe?

6/25/19 Kyle J. Knoepfel | LArSoft Workshop 201950

Guidance moving to art 3

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

• Determine what kind of module you need.
– Producer, filter, or analyzer?
– Do you need to create (Sub)Run products?
– Do you need to see every event?
– Do you need to call an external library that is not

thread-safe?
– Do you have mutable data members for which

operations are not thread-safe?

• We can provide guidance in dealing with such issues.
• Contact us.

