
Matti Kortelainen
LArSoft Workshop 2019
25 June 2019

Introduction to multi-threading and
vectorization

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

Broad introductory overview:
• Why multithread?
• What is a thread?
• Some threading models

– std::thread
– OpenMP (fork-join)
– Intel Threading Building Blocks (TBB) (tasks)

• Race condition, critical region, mutual exclusion, deadlock
• Vectorization (SIMD)

Outline

2

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

Motivations for multithreading

3

Image courtesy of K. Rupp

https://github.com/karlrupp/microprocessor-trend-data

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• One process on a node: speedups from parallelizing parts of
the programs
– Any problem can get speedup if the threads can cooperate on

• same core (sharing L1 cache)
• L2 cache (may be shared among small number of cores)

• Fully loaded node: save memory and other resources
– Threads can share objects -> N threads can use significantly

less memory than N processes
• If smallest chunk of data is so big that only one fits in

memory at a time, is there any other option?

Motivations for multithreading

4

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• “Smallest sequence of programmed instructions that can be
managed independently by a scheduler” [Wikipedia]

• A thread has its own
– Program counter
– Registers
– Stack
– Thread-local memory (better to avoid in general)

• Threads of a process share everything else, e.g.
– Program code, constants
– Heap memory
– Network connections
– File handles

What is a (software) thread? (in POSIX/Linux)

5

https://en.wikipedia.org/wiki/Thread_(computing)

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Processor core has
– Registers to hold the inputs+outputs of computations
– Computation units

• Core with multiple HW threads
– Each HW thread has its own registers
– The HW threads of a core share the computation units

What is a hardware thread?

6

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

Machine model

7

Image courtesy of Daniel López Azaña

http://www.daniloaz.com/en/differences-between-physical-cpu-vs-logical-cpu-vs-core-vs-thread-vs-socket/

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Processor core has
– Registers to hold the inputs+outputs of computations
– Computation units

• Core with multiple HW threads
– Each HW thread has its own registers
– The HW threads of a core share the computation units

• Helps for workloads waiting a lot in memory accesses
• Examples

– Intel higher-end desktop CPUs and Xeons have 2 HW threads
• Hyperthreading

– Intel Xeon Phi has 4 HW threads / core
– IBM POWER8 has 8 HW threads / core

• POWER9 has also 4-thread variant

What is a hardware thread?

8

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Data parallelism: distribute data across “nodes”, which then
operate on the data in parallel

• Task parallelism: distribute tasks across “nodes”, which then
run the tasks in parallel

Parallelization models

9

Data parallelism Task parallelism

Same operations are performed on different subsets of same
data.

Different operations are performed on the same or different data.

Synchronous computation Asynchronous computation

Speedup is more as there is only one execution thread
operating on all sets of data.

Speedup is less as each processor will execute a different thread
or process on the same or different set of data.

Amount of parallelization is proportional to the input data size. Amount of parallelization is proportional to the number of
independent tasks to be performed.

Table courtesy of Wikipedia

https://en.wikipedia.org/wiki/Data_parallelism#Data_parallelism_vs._task_parallelism

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Under the hoods ~everything is based on POSIX threads and
POSIX primitives
– But higher level abstractions are nicer and safer to deal with

• std::thread
– Complete freedom

• OpenMP
– Traditionally fork-join (data parallelism)
– Supports also tasks

• Intel Threading Building Blocks (TBB)
– Task-based

• Not an exhaustive list...

Threading models

10

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Executes a given function with given parameters
concurrently wrt the launching thread

std::thread

11

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 return 0;

}

• What happens?

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Executes a given function with given parameters
concurrently wrt the launching thread

std::thread

12

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 return 0;

}

• What happens?
– Likely prints n 1

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Executes a given function with given parameters
concurrently wrt the launching thread

std::thread

13

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 return 0;

}

• What happens?
– Likely prints n 1
– Aborts

• Why?

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Executes a given function with given parameters
concurrently wrt the launching thread

std::thread

14

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 return 0;

}

• What happens?
– Likely prints n 1
– Aborts

• Why? Threads have to be explicitly joined (or detached)

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Executes a given function with given parameters
concurrently wrt the launching thread

std::thread (fixed)

15

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 t1.join();

 return 0;

}

• What happens?
– Prints n 1

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

std::thread: two threads

16

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 std::thread t2{f, 2};

 t2.join();

 t1.join();

 return 0;

}

• What happens?

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

std::thread: two threads

17

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 std::thread t2{f, 2};

 t2.join();

 t1.join();

 return 0;

}

• What happens? n 1
n 2

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

std::thread: two threads

18

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 std::thread t2{f, 2};

 t2.join();

 t1.join();

 return 0;

}

• What happens? n 1
n 2

n 2
n 1

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

std::thread: two threads

19

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 std::thread t2{f, 2};

 t2.join();

 t1.join();

 return 0;

}

• What happens? n 1
n 2

n 2
n 1

n 1n 2

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

std::thread: two threads

20

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 std::thread t2{f, 2};

 t2.join();

 t1.join();

 return 0;

}

• What happens?
– etc

• Why?

n 1
n 2

n 2
n 1

n 1n 2

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

std::thread: two threads

21

void f(int n) {

 std::cout << "n " << n << std::endl;

}

int main() {

 std::thread t1{f, 1};

 std::thread t2{f, 2};

 t2.join();

 t1.join();

 return 0;

}

• What happens?
– etc

• Why? std::cout is not thread safe

n 1
n 2

n 2
n 1

n 1n 2

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

The strength of OpenMP is to easily parallelize series of loops

OpenMP: fork-join

22

Image courtesy of Wikipedia

void simple(int n, float *a, float *b) {

 int i;

#pragma omp parallel for

 for(i=0; i<n; ++i) {

 b[i] = std::sin(a[i] * M_PI);

 }

}

https://commons.wikimedia.org/wiki/File:Fork_join.svg

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Works fine if the workload is a chain of loops
• If workload is something else, well …

– Each join is a synchronization point (barrier)
• those lead to inefficiencies

• OpenMP supports tasks
– Less advanced in some respects than TBB

• OpenMP is a specification, implementation depends on the
compiler
– E.g. tasking appears to be implemented very differently

between GCC and clang

OpenMP: fork-join (2)

23

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• C++ template library where computations are broken into tasks
that can be run in parallel

• Basic unit is a task that can have dependencies (1:N)
– TBB scheduler then executes the task graph
– New tasks can be added at any time

• Higher-level algorithms implemented in terms of tasks
– E.g. parallel_for with fork-join model

Intel Threading Building Blocks (TBB)

24

void simple(int n, float *a, float *b) {

 tbb::parallel_for(0, n, [=](int i) {

 b[i] = std::sin(a[i] * M_PI);

 }

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Applications often contain multiple levels of parallelism
– E.g. task-parallelism for scheduling algorithms, fork-join within

algorithm
• The work is described at higher level than threads

– Work is described as tasks
– Threads are used to

execute the tasks
• Automatic load balancing

by work stealing

TBB (2)

25

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• What gets printed?

Race condition

26

int sum;

void add(int n) {

 sum += n;

}

int main() {

 sum = 0;

 std::thread t1{add, 1};

 std::thread t2{add, 2};

 t2.join();

 t1.join();

 std::cout << sum << std::endl;

 return 0;

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• What gets printed?
– 3

Race condition

27

int sum;

void add(int n) {

 sum += n;

}

int main() {

 sum = 0;

 std::thread t1{add, 1};

 std::thread t2{add, 2};

 t2.join();

 t1.join();

 std::cout << sum << std::endl;

 return 0;

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• What gets printed?
– 3
– 2
– 1

Race condition

28

int sum;

void add(int n) {

 sum += n;

}

int main() {

 sum = 0;

 std::thread t1{add, 1};

 std::thread t2{add, 2};

 t2.join();

 t1.join();

 std::cout << sum << std::endl;

 return 0;

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• What gets printed?
– 3
– 2
– 1
– Anything, data race is undefined behavior

Race condition

29

int sum;

void add(int n) {

 sum += n;

}

int main() {

 sum = 0;

 std::thread t1{add, 1};

 std::thread t2{add, 2};

 t2.join();

 t1.join();

 std::cout << sum << std::endl;

 return 0;

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Two threads “race” to read and write sum
• Many variations on what can happen

Race condition: explanation

30

reads

writes

Thread 1

reads

writes

Thread 2

= 3

Tim
e

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Two threads “race” to read and write sum
• Many variations on what can happen

Race condition: explanation

31

reads

writes

Thread 1

reads

writes

Thread 2

= 3

reads

writes

Thread 1

reads

Thread 2

= 2

writes

Tim
e

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Two threads “race” to read and write sum
• Many variations on what can happen

Race condition: explanation

32

reads

writes

Thread 1

reads

writes

Thread 2

= 3

reads

writes

Thread 1

reads

Thread 2

= 2

writes

reads

writes

Thread 1

reads

Thread 2

= 1

writes

Tim
e

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Two threads “race” to read and write sum
• Many variations on what can happen

Race condition: explanation

33

• How to solve this problem?

reads

writes

Thread 1

reads

writes

Thread 2

= 3

reads

writes

Thread 1

reads

Thread 2

= 2

writes

reads

writes

Thread 1

reads

Thread 2

= 1

writes

Tim
e

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Region of program where shared resource(s) are accessed
– Needs to be protected

Critical section

34

int sum;

void add(int n) {

 sum += n;

}

int main() {

 sum = 0;

 std::thread t1{add, 1};

 std::thread t2{add, 2};

 t2.join();

 t1.join();

 std::cout << sum << std::endl;

 return 0;

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• “is the requirement that one thread of execution never enters
its critical section at the same time that another concurrent
thread of execution enters its own critical section”
[Wikipedia]

• Can be achieved in many ways, a simple way is std::mutex
and locks

• Some other synchronization mechanisms:
– Condition variable, semaphore, monitor, barrier

• Blocking if implemented with mutexes
– Memory fences with atomics (non-blocking)

• Needs to be careful

Mutual exclusion

35

https://en.wikipedia.org/wiki/Mutual_exclusion

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

std::mutex and locks

36

int sum;

std::mutex mut;

void add(int n) {

 std::lock_guard<std::mutex> lock{mut};

 sum += n;

}

int main() {

 sum = 0;

 std::thread t1{add, 1};

 std::thread t2{add, 2};

 t2.join();

 t1.join();

 std::cout << sum << std::endl;

 return 0;

}

Mutex offers exclusive, non-recursive
ownership semantics

lock_guard provides RAII-style
mechanism for owning a mutex for
the duration of a scoped block

Now the program always prints 3

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• “is a state in which each member of a group is waiting for
another member, including itself, to take action” [Wikipedia]

Deadlock

37

std::mutex mut1;

std::mutex mut2;

void f1() {

 std::lock_guard<std::mutex> lock1{mut1};

 std::lock_guard<std::mutex> lock2{mut2};

}

void f2() {

 std::lock_guard<std::mutex> lock2{mut2};

 std::lock_guard<std::mutex> lock1{mut1};

}

Very easy to do, rather difficult to find

int main() {

 std::thread t1{f1};

 std::thread t2{f2};

 t2.join();

 t1.join();

 return 0;

}

https://en.wikipedia.org/wiki/Deadlock

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Primitive types whose operations are atomic
• Additions, subtractions etc, compare-and-exchange

Atomics

38

std::atomic<int> sum;

void add(int n) {

 sum += n;

}

int main() {

 sum = 0;

 std::thread t1{add, 1};

 std::thread t2{add, 2};

 t2.join();

 t1.join();

 std::cout << sum << std::endl;

 return 0;

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Thread friendly
– E.g. independent non-thread-safe objects for each thread

• Thread safe
– An operation can be called simultaneously from multiple

threads
– C++11 expects operations on const objects to be thread safe

• either bitwise-const, or internally synchronized

• Thread efficient
– A single mutex for all functions is safe, but not efficient
– Most performant is if each thread operates on different regions

of memory
• Threads modify the same cache line -> “false sharing”

– Huge performance hit

Threading guarantees

39

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• SIMD = Single Instruction Multiple Data [Wikipedia]
• Same operation on multiple data points simultaneously
• Intel SIMD instruction sets

– SSE: 128 bits = 4 floats
– AVX(-2): 256 bits = 8 floats, Fused Multiply-Add (FMA)
– AVX-512: 512 bits = 16 floats

Vectorization (SIMD): basic idea

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• SIMD = Single Instruction Multiple Data [Wikipedia]
• Intel SIMD instruction sets

– SSE: 128 bits = 4 floats
• SSE2 is the minimum of x86-64 (first Pentium 4, 2000)
• SSE3 introduced in Prescott Pentium 4, 2004
• SSE4 introduced in Core, 2006

– AVX(-2): 256 bits = 8 floats
• AVX: Sandy Bridge, 2011
• AVX-2 added FMA Haswell, 2013

– AVX-512: 512 bits = 16 floats
• Xeon Phi KNL, 2013
• Skylake (Xeon), 2015

Vectorization (SIMD): hardware support

41

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Let the compiler to do all the work

Autovectorization

42

void add(const float *a, const float *b, float *c, int size) {

 for(int i=0; i<size; ++i)

 c[i] = a[i]+b[i];

}

• How to know if the compiler actually vectorized?
– Diagnostic messages
– Check assembly

• movss/addss, xmm imply SSE

• Different compilers and versions may generate different code
• Small changes to code may lead to non-vectorized code

add(float const*, float const*, float*, int):
test ecx, ecx
jle .L1
lea r8d, [rcx-1]
xor eax, eax
.L3:
movss xmm0, DWORD PTR [rdi+rax*4]
addss xmm0, DWORD PTR [rsi+rax*4]
mov rcx, rax
movss DWORD PTR [rdx+rax*4], xmm0
add rax, 1
cmp rcx, r8
jne .L3
.L1:
ret

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

void ignore_vec_dep(int *a, int k, int c, int m) {

#pragma GCC ivdep

 for (int i = 0; i < m; i++)

 a[i] = a[i + k] * c;

}

• Next simplest option
– E.g. tell the compiler that there are no loop-carried

dependencies
• Compiler-specific pragmas (#ivdep)

Pragmas

43

• OpenMP
– Offers lots of knobs for tuning
void ignore_vec_dep(int *a, int k, int c, int m) {

#pragma omp simd

 for (int i = 0; i < m; i++)

 a[i] = a[i + k] * c;

}

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Program directly with “vector types”
– E.g. Vc (base for std::experimental::simd)

Libraries

44

using Vc::float_v

using Vec3D = std::array<float_v, 3>;

float_v scalar_product(Vec3D a, Vec3D b) {

 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];

}

• Scales to 1/4/8/16/… scalar products calculated in parallel,
depending on the target hardware

https://github.com/VcDevel/Vc
https://github.com/VcDevel/std-simd

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Lowest level just a bit above assembly
• Full control, full responsibility

Intrinsics

45

float CalcDotProductSse(__m128 x, __m128 y) {

 __m128 mulRes, shufReg, sumsReg;

 mulRes = _mm_mul_ps(x, y);

 shufReg = _mm_movehdup_ps(mulRes);

 sumsReg = _mm_add_ps(mulRes, shufReg);

 shufReg = _mm_movehl_ps(shufReg, sumsReg);

 sumsReg = _mm_add_ss(sumsReg, shufReg);

 return _mm_cvtss_f32(sumsReg);

}

From Stack Overflow

https://stackoverflow.com/a/42924346

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Vector operations operate on vector registers, want
contiguous data
– Usually Structure-of-Arrays is more performant than

Array-of-Structures

• Array programming! (numpy, Matlab)
• Most efficient if allocated memory is aligned by 64 bytes
• AVX comes with CPU frequency throttling
• GeantV: only 15-30% improvement from vectorization
• MkFit achieves 2x improvement from vectorization in CMS

tracking pattern recognition

Practical experience

46

struct Vec {

 float x, y, x;

};

std::vector<Vec> vecAOS;

struct VecSOA {

 std::vector<float> x, y, z;

};

VecSOA vecSOA;

6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization

• Multi-threading is here to stay
– A lot of potential pitfalls when going to details

• There are many high-level abstractions that help

• Most of the time our data processing frameworks abstract
away most of the details
– Enough to write thread friendly/safe/efficient code

• Also some simple guidelines
– Avoid mutable shared state as much as you can
– Use const properly everywhere you can

• Vectorization works well for math-heavy problems with large
arrays/matrices/tensors of data
– Not so well for arbitrary data and algorithms
– Keep in mind the CPU frequency scaling

Conclusions

47

