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* Mostly ideas to work towards solutions!
* Technology is in rapid evolution...
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Moore’s law

* We can no longer rely on frequency
(CPU clock speed) to keep growing
eXpOnential |y 40 Years of Microprocessor Trend Data
- nothing for free anymore ’ ’ | :
- hit the power wall

* But transistors still keeping up to scaling

» Since 2005, most of the gains in single-
thread performance come from vector

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHZz]

Typical Power
(Watts)

operations pumber of
» But, number of logical cores is rapidly lee TT T ek -ogieal Cores
| Y S-S SN S0 GRO SO UG ¢ oot SR ]
growing - | | | i
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

o MUSt explort para”ellzathn to aVOId New plot and data collected for 2010-2015 by K. Rupp
sacrificing on physics performance!
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Parallelization paradigms: data parallelism

« Same Instruction Multiple Data model:
- perform same operation in lock-step mode on an array of elements

» CPU vector units, GPU warps
- AVX512 = 16 floats or 8 doubles Scalar Vectorized

- Warp = 32 threads [(] ‘|||||||\
operation) | | Toperation | _
* Pros: speedup “for free” Time i [IIIIIII]

- except in case of turbo boost - ...E...

 Cons: very difficult to achieve In Iarge Y m YOI DY DY YL YL Y Y
portions of the code

- think how often you write ‘if () {} else {}’
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Parallelization paradigms: task parallelism

* Distribute independent tasks across different threads, threads across cores

* Pros:

- typically easier to achieve than vectorization Single Threading

- also helps with reducing memory usage

» Cons:
- cores may be busy with other processes
- need to have enough work to keep all cores st

v

constantly busy and reduce overhead impact
- need to cope with work imbalance
- need to minimize sync and communication

©

4
between threads ExecutionTime = 2 Task,
=1
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Thread-level Parallelism

v . v . v . v .

f R R R N
~ Task1 " Task2 |  Task4

Thread Thread Thread Thread
1 L2 . 3 . 4

ExecutionTime = MAX (Task,)
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Emerging architectures

g il
-'/ More flexible...

FPGAs
More efficient...

GPUs S l
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Microprocessors / 10X

CPUs

* It’s all about power efficiency
* Heterogeneous systems

* Technology driven by Machine
Learning applications
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Source: ISSCC Proceedings

Source: Bob Broderson, Berkeley Wireless group

JE :
3¢ Fermilab
6 2019/06/25 Computing in the time of DUNE; HPC computing solutions for LArSoft - G. Cerati (FNAL)



Intel Scalable Processors

®

(intel

®

intel/ =D | =

XEON XEON XEON  XEON'
GOLD PLATINUM SILVER BRONZE
inside” inside” inside” | |ns»|e

Intel® Turbo Boost Technology *

Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal
and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don't.

Intel® Xeon® Gold 6252 Processor
35.75M Cache, 2.10 GHz

Performance

# of Cores 7
# of Threads ?
Processor Base Frequency 7
Max Turbo Frequency 7
Cache 7
# of UPI Links 7
TDP 7
Instruction Set Extensions 7

# of AVX-512 FMA Units ?

2t Fermilab
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48

2.10 GHz

3.70 GHz

36 MB

150 W

Intel® AVX-512



NVIDIA Volta
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IGPU Architecture

NVIDIA Tensor
Cores

NVIDIA CUDA®
Cores

Double-Precision
Performance

Single-Precision
Performance

Tensor
Performance

GPU Memory

Memory
Bandwidth

ECC

Interconnect
Bandwidth

System Interface

Form Factor

Max Power
Comsumption

Thermal Solution

Compute APIs

Tesla V100 Tesla V100
PCle SXM2

NVIDIA Volta
640

5,120
7 TFLOPS 7.8 TFLOPS
14 TFLOPS 15.7 TFLOPS

112 TFLOPS 125 TFLOPS
32GB /16GB HBM2
900GB/sec
Yes
32GB/sec 300GB/sec

PCle Gen3 NVIDIA NVLink

PCle Full

Height/Length SAME

250 W 300 W

Passive

CUDA, DirectCompute,
OpenCL™, OpenACC
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Next Generation DOE Supercomputers

* Today - Summit@ORNL.:
- 200-Petaflops, Power9 + NVIDIA Tesla V100

e 2020 - Perimutter@NERSC:
- AMD EPYC CPUs + NVIDIA Tensor Core GPUs

- “LBNL and NVIDIA to work on PGI compilers to
enable OpenMP applications to run on GPUSs”

- Edison moved out already!

» 2021: Aurora@ANL sodk Rk - _
- Intel Xeon SP CPUs + Xe GPUs Ll FH@ONTIER
- Exascale! e

e 2021: Frontier@ ORNL
- AMD EPYC CPUs + AMD Radeon Instinct GPUs

af Fermilab
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Commercial Clouds

* New architectures are also boosting the performance of commercial clouds

Google
Cloud

2013

Cloud TPU "

2006
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8

™) Google Cloud Platform
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“Yay, let’s just run on those machines and get speedups”
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“Yay, let’s just run on those machines and get speedups”

* The naive approach is likely to lead to big
disappointment: the code will hardly be Classical roofline
faster than a good old CPU

* The reason iIs that in order to be efficient on
those architectures the code needs to be
able to exploit their features and overcome
their limitations

FMA+SIMD

FMA

Scalar

_ a2 Memory/ Compute
» Features: SIMD-units, many cores, FMA Compute Bound
@ﬁ@ Bound

* Limitations: memory, offload, imbalance

1
[
[
I
I
I
I
I
I
I
I
I
I

Attainable Performance (Gflops/s)

° These can be VISI.IaIizeCI on the rOOfIIne pIOt Arithmetic Intensity (flops/byte)
- the typical HEP code is low arithmetic intensity...
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Strategies to exploit modern architectures

* Three models are being pursued:
1. stick to good old algorithms, re-engineer them to run in parallel
2. move to new, intrinsically parallel algorithms that can easily exploit architectures
3. re-cast the problem in terms of ML, for which the new hardware is designed

* There’s no right approach, each of them has its own pros and cons
- my personal opinion!

* Let’s look at some lessons learned and emerging technologies that can
potentially help us with this effort
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Some lessons learned from LHC friends

» Work started earlier on the LHC experiments to modernize their software
 Still in R&D phase, but we can profit of some of the lessons learned so far

* A few examples:

- hard to optimize a large piece of code: better to start small then scale up

- writing code for parallel architectures often leads to better code, usually more performant
even when not run in parallel
* better memory management
* better data structures
* optimized calculations

- HEP data from a single event is not N/ - -
enough to fill resources e Ce—

* need to process multiple events
concurrently, especially on GPUs

- Data format conversions can be bottleneck N concurrent events

CMS Patatrack project
https://patatrack.web.cern.ch/patatrack/

1400 ev/s

1200 ev/s Dual Xeon Gold 6130
- 32 cores, 64 threads
- 32 cores, 32 threads
1000 ev/s SR TEEE st Dbl ol

® - GPU algorithms
- with host copy

(0]
o
o
=

- GPU algorithms
- with host copy

throughput

- GPU algorithms
- with host copy

BRIl

- GPU algorithms
200 ev/s = = =@ == - Wwith host copy
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Data structures: AoS, SoA, AoSoA?

1 struct point3D ({
- Efficient representation of the data is a 3 float 3, A0S
. . 4 float 2z;
key to exploit modern architectures 5 1 I
struct point3D points|[N];

7 float get point x(int i) { return points[i].x; }

https://en.wikipedia.org/wiki/AOS_and_SOA

struct pointlist3D {

* Array of Structures:
- this is how we typically store the data e
3 float NJ;
- and also how my serial brain thinks s float a(n, SOA
5
6

» Structure of Arrays: :

struct pointlist3D points;
7 float get point x(int i) { return points.x[i]; }
- more efficient access for SIMD operations,
load contiguous data into registers ~ CMS Parallel Kalman Filter

* Array of Structures of Arrays
- one extra step for efficient SIMD operations
- e.g. Matriplex from CMS R&D project

15 2019/06/25 Computing in the time of DUNE; HPC computing solutions for LArSoft Z‘L’;‘f'(l'é.au (FINAL) A http'//trackreco glthUb IO/



Heterogeneous hardware... heterogeneous software?

* While many parallel programming concepts are valid across platforms, optimizing code
for a specific architecture means making it worse for others
- don'’t trust cross platform performance comparisons, they are never fair!

* Also, if you want to be able to run on different systems, you may need to have entirely
different implementations of your algorithm (e.g. C++ vs CUDA)
- even worse, we may not even know where the code will eventually be run...

* There is a clear need for portable code!

- and portable so that performance are OPENACC DIRECTIVES
“good enough” across platforms
. . . #pragma acc data copyin(a,b) copyout(c) o
* Option 1: libraries Oata —— : : Incremental
_ _ _ _ ovemen L . - Single source base
- write high level code, rely on portable libraries . _—" Progna acc paratic it o
. . :;]::fleel #pragma acc loop gang vector nteroperable
- Kokkos, Raja, Sycl, Eigen... Execution for &1? S;a%i; L‘ib;ﬁ? { - Performance portable
° Optlon 2. portable compilers Optimize y - CPU, GPU, Manycore
. 00 }
- decorate parallel code with pragmas Mappings - OnenACe
- OpenMP, OpenACC, PGI compiler |3

PGl Compilers for Heterogeneous Supercomputing, March 2018
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Array-based programming

* New kids in town already know numpy... and we force them to learn C++
 Array-based programming is natively SIMD friendly

» Usage actually growing significantly in HEP for analysis
- Scikit-HEP, uproot, awkward-array

* Portable array-based ecosystem
- python: numpy, cupy
- C++: Xtensor

 Can it become a solution also
for data reconstruction?

CPU GPU
(vectorized) (“vectorized”)

L, :
af Fermilab
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HLS4ML high level synthesis for machine learning

Implemented an user-friendly and automatic tool to develop and optimize FPGA
firmware design for DL inference:

e reads as input models trained with standard DL libraries

e uses Xilinx HLS software (accessible to non-expert, engineers resource not common in HEP)
e comes with implementation of common ingredients (layers, activation functions, binary NN ...)

PYTHORCH

Keras
TensorFlow Vivado™ HLS

PyTorch
- hls 4 ml

Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Sioni Summers [CERN]

Co-processing kernel
Javier Duarte, Sergo Jindariani, Benjamin Kreis, Ryan Rivera, Nhan Tran [Fermilab] ‘
Edward Kreinar [Hawkeye360]
Song Han, Philip Harris, Dylan Rankin [MIT]
Zhenbin Wu [University of lllinois at Chicago]

compressed

model HLS —
conversion

Mark Neubauer [University of lllinois Urbana-Champaign]
Shih-Chieh Hsu [University of Washington] Usual ML J}‘

Giuseppe Di Guglielmo [Columbia University] software workflow
\tune configuration /
precision
reuse/pipeline

Custom firmware
design

+ B
K Tiarrerl o https://hls-fpga-machine-learning.github.io/hls4ml/
o https://arxiv.org/abs/1804.06913
23.01.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs 12
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HPC Opportunities for LArTPC
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HPC Opportunities for LArTPC: ML

* LArTPC detectors produce gorgeous images:
natural to apply convolutional neural network techniques
- €.g. NOVA, uB, DUNE... event classification, energy regression, pixel classification

* LArTPCs can also take advantage of different types of network: Graph NN
* Key: our data is sparse, need to use sparse network models!

MicroBooNE, arXiv:1808.07269

A u ri S a n O et a I : % 20 w 60 80 700 0 - i -
. X-view ' .
arXIV:1 604_01 444 (a) v, CC interaction.

5 of e | MicroBooNE
| | Track-like Simulation
O O Shower-like SSNet output Prclnmnary

20  2019/06/25 | Xoviow . Fview



HPC Opportunities for LArTPC: parallelization

* LArTPC detectors are naturally divided in different elements
- modules, cryostats, TPCs, APAs, boards, wires

» Great opportunity for both SIMD and thread-level parallelism
- potential to achieve substantial speedups on parallel architectures

* Work has actually started...
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First examples of parallelization for LArTPC

 Art multithreaded and LArSoft becoming thread safe (SciSoft team)

» Icarus testing reconstruction workflows split by TPC
- Tracy Usher@| ArSoft Coordination meeting, May 7, 2019

* DOE SciDAC-4 projects are actively exploring HPC-friendly solutions
- more In the next slides...

2= Fermilab
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https://indico.fnal.gov/event/20744/contribution/2/material/slides/0.pdf

Vectorizing and Parallelizing the Gaus-Hit Finder

https://computing.fnal.gov/hepreco-scidac4/
(FNAL, UOregon)

Vectorization of Stand-Alone GausHitFinder Parallelization of Stand-Alone GausHitFinder

* Vectorization challenges: . Using OpenMP parallel for loop over KNL SPEED UP

— Minimization difficult because fits converge regions of interest (ROI) on the ssuatc sDnamie  Guided < Aute
in different numbers of iterations wires

— Cannot fit multiple hits at the same time — — Fastest with “dynamic” thread
) . ) Vectorization Speed-Up scheduling
— Vectorize the most time consuming loop, Fssse
Option

SPEED-UP

but this is not all of the code relative to no Parallelization challenges:

vectorization Al thm h lativel 1
. . — Algorithm has a relatively sma
* Vectorization Strategies: no-vec, no 1 amount of work. Single muon events  VBER OF THREADS FOR RO (00P

— Compiler vectorization: use avx512 pragmas have less less work to do than the
SKYLAKE SPEED UP

o Static ™ Dynamic 4 Guided X Auto

— Explicit vectorization on the most time  sse, pragmas 1.2 average neutrino event.

consuming loops: avx512, no — Thread overhead may limit speed up
— Loops determined by profiling the code  pragmas Speed increases with

— #pragma omp simd, #pragma ivdep avx512, parallelization:

i — KNL: 17 times faster
* Speed increases pragmas

Explicit torizati 65% fast KNL — Skylake: 12 times faster
— EXPIICIT vectorization: ™ o TdSter on ) . . ¥ 0 . L
~50% faster on Skylake The speed improvements from ]

. . o . . " para”e||zat|on are not yet |nC|Uded NUMBER OF THREADS FOR ROI LOOP
— Compiler and explicit vectorization: 2 times i LArSoft

faster on KNL than with no vectorization

AXISTITLE

June 18, 2019 S. Berkman
June 18, 2019 S. Berkman

Sophie Berkman@LArSoft Coordination meeting, June 18, 2019  Integration in LArSoft is underway!
Je -
3¢ Fermilab
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https://indico.fnal.gov/event/21028/contribution/1/material/slides/0.pdf
https://computing.fnal.gov/hepreco-scidac4/

Noise filtering on LArIAT data

2% Fermilab

Noise removal from LArlIAT waveforms

* LArIAT is a LArTPC (Liquid Argon Time Projection Chamber) test beam experiment

* Converted all LArlAT raw data sample to one HDF5 file
— Started with 200K art/ROOT data files
— ~42 TB of digitized waveforms (4.2 TB compressed)
— 15,684,689 events.
— Waveform data from u and v wireplanes (240 wires per plane, 3072 samples per wire)

» Reorganized the data using HDF to be more amenable for parallel processing

* Processing the entire LArlAT raw data sample
— First step of reconstruction is noise reduction using FFTs

EEEEEEEEEEEE Office of Argon e
Science = Cwnowia H

8/23/2018  J.Kowalkowski — Scalable 1/0 Workshop

Processing speed (events/s)

J.Kowalkowski@ Scalable 1/0O Workshop 2018

FERMILAB-CONF-18-577-CD

https://computing.fnal.gov/hep-on-hpc/
(FNAL, Argonne, Berkeley,
UCincinnaty, Colorado State)

Processing speed for full analysis being done

I I I I
600 800 1000 1200

Number of nodes

* Entire LArlAT dataset processed in three minutes (at 1200 nodes)
« Shows perfect scaling

24 2019/06/25 Computing in the time of DUNE; HPC computing solutl .,  gu32018  Jkowalkowski — Scalable 10 Workshop
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https://computing.fnal.gov/hep-on-hpc/
https://indico.fnal.gov/event/ANLHEP1383/session/12/contribution/7/material/slides/0.pdf

Oscillation parameter extraction with Feldman-Cousins fits

https://computing.fnal.gov/hep-on-hpc/
(FNAL, Argonne, Berkeley, UCincinnaty, Colorado State)

Computational Challenges Performance Results
» Need Ax? distributions for each point in sampled parameter space. oz T ] NOvVA Preliminary
Minimal set requires: i || ° FirstRun - may 7, 2018 07 RoFdmanGousins

® 1,200 points total for ten 1D Profiles, 60 points each for 2 octants of 03 | o Peaked at over 1.1 million running jobs e ——

@ 471 points total for four 2D Contours, after optimizing for regions of Z 0.5f : 0.6
, _ : - ] @ Largest Condor pool ever!
interest in parameter space

0.43 @ Ran for 16 hours, consumed 17M CPU-hours

. . @i D2 (3¢ + Best it ] Vetted results 4h later
» For each point, need at least 4,000 pseudoexperiments to generate 0-3-‘.. ° D C DG N © , e -
0 @ Noticed apparent anomalous behavior in fitting 0.4

accurate empirical distribution cp _ , _ :
output, due to aforementioned increased complexity - Feldman-Cousins

= NERSC running enabled us to quickly examine 0.3;_-10 @26 O3 + Best Fit ‘
anomalies, add further diagnostics, and fully validate 0.7FNo Feldman-Cousins

the results in second run L — 160 —.20
0.6}

0.5}

© Depends on how large the critical value corresponding to desired Required No. of Minimum No. of
confidence level is (up to 30 for NOVA) Points Pseudoexperiment
@ Depends on number of systematic uncertainties included
@ Computing Ax2 for each pseudoexperiment takes between O(10 min) 6,684,000
to O(1 hour) for fits with high-level of degeneracy

< I
Second Run - May 24, 2018 0.5}
@ Peaked at over 0.71 million running jobs :

» Previously done with FermiGrid + OSG resources - results obtained in ~4 weeks
® FermiGrid provides a total of ~200M CPU-hours/year (50% CMS, 7% NOvVA). Use of OSG opportunistic resources by NOvA 0 4:

doubles FermiGrid allocation (NOVA total of ~30M CPU-hours/year) ® Second largest Condor pool ever! F Eldman oo
@ Ran for 36 hours, consumed 20M CPU-hours :-910’“3"' ousins

- . 0.3
» 2018 analysis includes new antineutrino dataset + longer list of systematics = FermiGrid + OSG not enough to get to ® Over 8.1 million total points analyzed 0

results in timely fashion

N Mnlb in HP nvienit-CP erdﬁ Mara - S Iodsa -ivei ofrcéti . - B o B S S 12| 'A Ahl ‘is in‘HP nviomenit-‘CEP 201'- Sdﬁ, |~ar‘ia . B o Ie odsé -niversi' of‘Cchéti B

A.Sousa@CHEP2018 50x speedup achieved thanks to supercomputer!

JE :
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https://computing.fnal.gov/hep-on-hpc/
https://indico.cern.ch/event/587955/contributions/2938131/attachments/1685595/2710354/Sousa_SciDac4_NOvA_HPC_CHEP2018.pdf

Exploit HPC for LArTPC workflows?

» Many workflows of LArTPC experiments could exploit HPC resources

- simulation, reconstruction (signal processing), deep learning (training and inference),
analysis

» Our experiments operate in terms of production campaigns
- typically at a give time of the year, in advance of conferences

- most time consuming stages are then frozen for longer periods of time, with faster
second-pass processing repeated multiple times (this is happening now in uB)

- HPC centers are a possible resource for the once/twice-per-year heavy workflows!
* something like signal processing + DL inference?

 See next talk for more discussions on future workflows!

2= Fermilab
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