

TDR plots updates

L. Escudero for the Pandora Team

DUNE FD Sim/Reco meeting 15th of April 2019

Overview

TO-DO LIST:

- •Some plots were missing (high level reco)
- Some plots need to be updated with MCC11
- Some text needs updating after initial LBNC questions

TODAY:

 Updates on the plots, will follow up updating them in overleaf with the text in the next days

Some plots need to be updated with MCC11

Different larsoft/dunetpc versions:

MCC11: v07_06_02 MCC10: v06_60_00

But flux file used seems to be the same:

Flux file: /pnfs/dune/persistent/TaskForce_Flux/ GenieHistFluxFiles/g4lbne_v3r2p4b_FHC_FD_RIK.root

What else has changed? detsim? Hit reconstruction?

Results are compatible MCC10 vs MCC11, but I do see an impact in performance in MCC11

ALL INTERACTIONS EXCEPT DIS

Note: might still try to add tau performance

ALL INTERACTIONS EXCEPT DIS

Note: might still try to add tau performance

光 15 第一部 5 第 第

ALL INTERACTIONS EXCEPT DIS

NEW

ALL INTERACTIONS (INCLUDING DIS)

Will be updated in the same way

Maybe we should also add DeltaR plot? Seemed useful to answer a question from LBNC

PROTODUNE-SP EVENT EXAMPLE - UPDATED TO USE A DATA ONE (old MC one in backup) - provided by Steve Green

ASKED BY LBNC TO ADD THIS PLOT: Distribution of interaction channels as a function of Energy

Will be updated in the same way

For track-like MC primary particles:

Selection is done re-using methods used in Pandora to compute performance metrics: LArContent/LArMonitoring/EventValidation.C

- Select Final State PFOs (i.e. primaries, not daughters of another PFO)
- Select reconstructable MC particles, target and primaries (i.e. produce enough hits* & first long-lived visible in hierarchy)
- Create maps of shared hits between MC->PFO
- Select the best match (best completeness)
- Make plots only for good matches (>50% purity, >10% completeness)
- Make plots for PFOs (PFParticles) regardless of their track/shower label

Then calculations:

- Lengths are computed as the module of the vector between start and end points
- Opening angle is calculated with the reconstructed and true direction (from true momentum)

For track-like MC primary particles:

大部分

- Applying containment (both true start and end points within fiducial volume) see backup for studies about its impact
- No minimum true length required but could be studied
- Played with 2D plots for track length, could be added as well.

For track-like MC primary particles:

- Applying containment (both true start and end points within fiducial volume) see backup for studies about its impact
- No minimum true length required but could be studied
- Played with 2D plots for track length, could be added as well.

Also, need to quantify in the text: E.g. X% have a difference in length less than Y cm

Maybe the plot on the right with particle breakdown, and the right with all?

为 **1** 为 3 **1** 为 3 **1** 为

Plots look good but more investigation is needed for pions/protons

Plots look good but more investigation is needed for pions/protons

DAUGHTER PFOs - refinement

But sometimes we need to account for scattering

<u>たまた。 第一部</u>の たまた。 第二部の

> The "scattered stages" (p2 and p3) are different MC particles, so the true length is just the one of p1 But in reality, they look like a single particle:

So we can add up length of daughters if the scattering angle is negligible. This will improve especially protons' distribution

Curiosity...

为 1 为 1 日 | 5 日 | 5 日 | 5

For shower-like MC primary particles: Matching as described in page 11

Shower direction is computed using using PCA as it is used to create the recob::Shower objects in larpandora

ELECTRONS

PHOTONS

For shower-like MC primary particles: Matching as described in page 11

- Energy is computed using the same methods as in larreco/Calorimetry/LinearEnergyAlg
- Presented only for the collection plane here
- To account for true deposited energy: I am adding the energy of all hits matched to the MC particle (min 90% contribution)

ELECTRONS

PHOTONS

How interesting is this? It is a translation of the completeness provided in page 6

dEdx:

- True start point of the shower within FV
- Plots made only for collection plane (done for other planes in the past), requiring at least 30 hits in that plane
- Explored removing DIS events, as they are very busy, subject to accidental merges

Graphically

- If the MC particle has more than one good match PFO associated (split) use the one closer to the true start point, rather than best match
- Select all hits within 2 cm of the reco shower vertex (projected, found closest hit in each view) BUT
- Select a minimum of X (5) hits
- A cut in rT has also been studied (0.5 cm) but doesn't change much

dEdx:

Technically

- I first started developing this analysis in larpandora (repository that serves as translation between Pandora and LArSoft) in the module that creates recob::Showers (previous presentations)
- This means I started doing this directly in LArSoft and it is painfully slow
- So I moved the logic to an algorithm inside Pandora (LArContent) way faster, and I can handle the true-reco matching logic in the same way as inside Pandora
- Both ways (entirely in Pandora or entirely outside Pandora) need rewriting code:

In Pandora

- ConvertXToTicks (recover hit time)
- Methods in CalorimetryAlg:
 - LifetimeCorrection
 - ModBoxCorrection

In LArSoft

- Pandora's Rotational Plugin
- Undo breakdown of a single cluster into multiple due to several TPCs
- Reco-true matching

To release this (post-TDR): geometrical logic (selection of hits) will be done inside Pandora and the information transferred (a la LArPfoTrack) to the larpandora module to access the calorimetry methods

dEdx investigation (ongoing)

Using the true direction (dashed lines) doesn't have a big impact

Sometimes I've seen it's related to the vertex reconstruction (improvements expected), sometimes very hard to reconstruct well:

electron/gamma separation: moving forwards

There are other features we can use to separate electron/photon

- Point shower starts showering
- Distance shower vertex to neutrino vertex

I would like to try using them as a continuation of this study, but what do we want for the TDR?

Also, Jhanzeb, PhD student working with John in Warwick, has developed already a SVM model for vertex selection in DUNE FD, which I am going to try - that I expect to make an impact in these plots!

Summary

- Updated and created plots according to the TO-DO list for the TDR
- Some plots need a bit of discussion/ investigation
- Then text in overleaf also needs to be updated
- •For end of April?

Contact us

General:

Pandora SDK Development

LAr TPC algorithm development

DUNE FD Integration

ProtoDUNE Integration

MicroBooNE Integration

Other team members

pandora@hep.phy.cam.ac.uk

John Marshall (John.Marshall@warwick.ac.uk) Mark Thomson (thomson@hep.phy.cam.ac.uk)

John Marshall (John.Marshall@warwick.ac.uk) Andy Blake (a.blake@lancaster.ac.uk)

Lorena Escudero (escudero@hep.phy.cam.ac.uk)

Steven Green (sg568@hep.phy.cam.ac.uk)

Andy Smith (asmith@hep.phy.cam.ac.uk)

MicroBooNE: Joris Jan de Vries, Jack Anthony ProtoDUNE: Stefano Vergani

https://github.com/PandoraPFA

https://pandorapfa.slack.com

Reconstruction Performance

1.3.3 Reconstruction Performance in ProtoDUNE-SP

Lorena Escudero, DUNE Collaboration Meeting

High level reco: tracks

Plots look good but some refinements are needed

1) Containment (i.e. true start and end position in fiducial volume)

