Ions Transport equations and El.Field Distortion from Space Charge in LAr Ionization Chambers

Flavio Cavanna (FNAL) and Xiao Luo (Yale U)

April 14, 2019

Charge Transport equation: General Concepts

Transport equation: the case of a LAr Ionization Chamber

Transport equation in LAr Ionization Chamber: the protoDUNE TPC case

Solutions of the Transport equations and Electric Field distortion

Photon Emission during Ion Transport

Ionization Electron Survival probability along drift distance

Charge Transport equations: General Concepts

- The transport equation is a general conservation equation for the motion of a scalar quantity (Charge) in some medium (Gas, Liquid, Solid) through a domain (1D, 2D, 3D interval).
- ▶ Definitions: "Charge" q, density ρ $[m^{-3}]$, current density $\vec{J} [m^{-2}s^{-1}]$ with $\vec{J} = q\rho\vec{v}$ where $\vec{v} [m s^{-1}]$ is the bulk velocity.
- The net "transport" of q is the balance of:
 - the Influx of q across the boundaries into the domain
 - the Outflux of q across the boundaries from the domain
 - the Generation of q within the boundaries of the domain
 - the Loss of q within the boundaries of the domain.
 - the Accumulation of q in the domain
- ► A general Conservation Law of the Charge *q* is assumed to hold:

$$q_{Accumul} = q_{In} - q_{Out} + q_{Gen} - q_{Loss} \tag{1}$$

Charge Transport equation: General Concepts

where:

Accumulation: q_{Accumul} is the Charge accumulation in Time in the interval dt inside the Volume dV:

$$q_{Accumul} = \frac{\partial(q\rho)}{\partial t} dt dV$$

Influx and Outflux: the net difference of Influx and Outflux through the Volume dV:

$$(q_{In} - q_{Out}) = -\nabla \cdot \vec{J} dt dV$$

Generation and Loss: sources and sinks of charge S_k[m⁻³s⁻¹] may be present in the Volume dV. The net difference between charge-generation and charge-loss in the interval dt and in the Volume dV is:

$$(q_{Gen} - q_{Loss}) = S_{Gen} dt dV - S_{Loss} dt dV = \Delta S dt dV$$

The Conservation Law of the Charge in the Volume (Eq.1) can thus assume the (more familiar) form of continuity equation in its differential form:

$$\frac{\partial(q\rho)}{\partial t} + \nabla \cdot \vec{J} = \Delta S \tag{2}$$

- I.h.s.- first term (time variation): Accumulation term
- I.h.s.- second term (space variation): Influx and Outflux through the Volume dV
- r.h.s. : balance of the Generation and Loss due to Sources and Sinks of Charge in the Volume.

Charge Transport equation: The Stationary case

- Systems where no charge accumulation occurs, i.e. where (q_{Out} − q_{In}) = (q_{Gen} − q_{Loss}), are "Stationary" systems and ∂(qρ)/∂t = 0.
- Example: systems where (1) no charge is emitted into the Control Volume from the surface delimiting the Volume and (2) all the charge reaching the surface is absorbed.
- ► In these cases the Charge Conservation Law of Eq.2 reduces to:

$$\nabla \cdot \vec{J} = \Delta S \tag{3}$$

Charge Transport equation: the case of the Ionization Chamber - [Charge = e^{-} , I^{+}]

- ▶ Parallel plate Ionization Chamber: Anode plane $(x_A = 0)$, Cathode plane $(x_C = d)$, $\vec{E} = (E_0, 0, 0)$ [with $E_0 = V_0/d$ established by V_0 voltage at the Cathode].
- The parallel plate IC geometry represents a 1-D domain where free charged particles of opposite sign (e⁻, I⁺) generated by Ionization move in opposite direction along x with different drift velocities →
- Transport Equations:
 - Medium: any dielectric material (relative permittivity ε_r)
 - Domain: 1D interval [0, d] Anode to Cathode Drift distance (along x) -
 - Scalar quantities:

Electron Charge (q = -1):

 $\vec{v_d}^e = (-v_d^e, 0, 0), \ \vec{J_e} = (J_e, 0, 0) \ {\rm with} \ J_e = -v_d^e \ n_e; \ n_e(x) \ el-density$

lon Charge (q = +1): $\vec{v}_d^+ = (v_d^+, 0, 0), \ \vec{J}_+ = (J_+, 0, 0)$ with $J_+ = v_d^+ \ n_+; \ \mathbf{n}_+(\mathbf{x}) \ I^+$ -density

- Drift velocities dependance on Electric Field:
 - drift velocities (and Current density) depend on the E-Field strength in the domain

•
$$v_d^e = \mu_e E$$
, $v_d^+ = \mu_+ E$ with μ_e , $\mu_+ [m^2 s^{-1} V^{-1}]$ electron and lon *mobility* (independent

from E in first approximation)

Charge Transport equation: the case of the Ionization Chamber - [Charge = e^- , I^+]

Assuming Stationary systems in 1-D domain, the Charge Conservation Law of Eq.3 provide the Transport Equations System:

$$\begin{cases} \frac{\partial J_e}{\partial x} = S_{Gen}(e^-) - S_{Loss}(e^-) \\ \frac{\partial J_+}{\partial x} = S_{Gen}(I^+) - S_{Loss}(I^+) \end{cases}$$
(4)

▶ In case the density of the slow lon charge is large enough to modify the uniform electric field established in the parallel plate IC, the divergence of the actual electric field *E*(*x*) depending on the charge density enclosed in the IC volume (Gauss Law) should be added to the System:

$$\begin{cases} \frac{\partial(-\mu_e \ E \ n_e)}{\partial x} = S_{Gen}(e^-) - S_{Loss}(e^-) \\ \frac{\partial(\mu_+ \ E \ n_+)}{\partial x} = S_{Gen}(I^+) - S_{Loss}(I^+) \\ \frac{\partial E}{\partial x} = \frac{1}{\epsilon}(n_+ - n_e) \end{cases}$$
(5)

Ionization in LAr and the Initial Microscopic Fast Processes

 Ionization from radiation penetrating/crossing the LAr volume is the production mechanism for (e⁻, Ar⁺) pair generation:

$$Ar + W_{ion} \rightarrow e^- + Ar^+$$
; $W_{ion} = 23.6 \ eV/{
m pair}$ in LAr

 Ar⁺ ions rapidly associate in multi-body collisions with ground-state atoms to form Ar₂⁺ molecular ions:

$$Ar^+ + Ar \rightarrow Ar_2^+$$

 e⁻ and Ar₂⁺ undergo fast (Columnar) Recombination whose fraction R depends upon the actual El. Field in the LAr Volume

Initial Microscopic Fast Processes

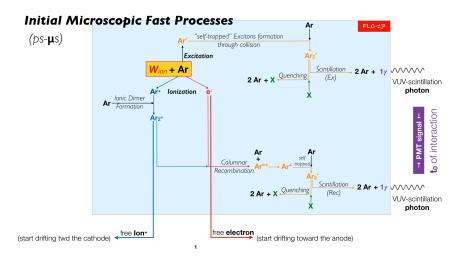


Figure: Initial Microscopic Fast Processes from energy deposit by Ionization

protoDUNE LArTPC in Parallele Plate IC approximation, and Ionization process from Cosmic Muons

- ► ProtoDUNE TPC 2 Drift Volumes, each with Dimensions: $\Delta x = 3.6 \ m, \ \Delta y = 6 \ m, \ \Delta z = 7 \ m \rightarrow V = 150 \ m^3$
- ▶ ProtoDUNE TPC Anode-Cathode ΔV : $V_0 = 180kV \rightarrow$ (Nominal) E Field in Drift Volume: $\vec{E} = (E_0, 0, 0), E_0 = 500 V/cm$
- Recombination Factor $R(E_0) = 0.7$ (fraction of charge surviving initial Recombination at nominal Field)
- ► Cosmic Muon Rate in Drift Volume: $r_{\mu} = 13 \ kHz \ [\leftarrow R_{Tot}^{\mu@surf} = 200\mu/m^2s]$
- Average muon track length in Drift Volume: $\langle \ell_{\mu}
 angle ~=~$ 3.4 m
- Total muon track length per unit of time in Drift Volume: $L^{\mu}_{Tot} = 44,200 \ m \ s^{-1}$
- ▶ Ionization Rate of (e^-, I^+) pairs freed: $N_{Pairs}^i = L_{Tot}^{\mu} \frac{dE}{dx} \frac{1}{W_{ion}} R(E_0) = 2.8 \times 10^{11} [s^{-1}]$
- ► Ionization Rate per Unit of Volume of (e⁻, l⁺) pairs freed: $n_{Pairs}^{i} = \frac{N_{Pairs}^{i}}{V} = 1.9 \times 10^{9} [m^{-3} s^{-1}]$ uniformly distributed in the drift volume and constant in time

Charge Generation in LAr from Initial Processes

•
$$e^-$$
 Charge generation rate per unit Volume:
 $S^i_{Gen}(e^-) = n^i_{Pairs} [m^{-3} s^{-1}]$

▶ Positive Ion Charge generation rate per unit Volume:

$$S_{Gen}^{i}(Ar_{2}^{+}) = n_{Pairs}^{i} [m^{-3} s^{-1}]$$

<□ > < @ > < E > < E > E のQ @

Subsequent Processes during drift time

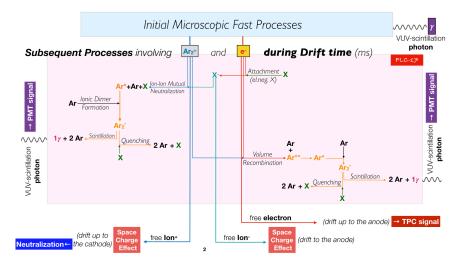


Figure: Susequent Processes during drift time

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Charge Loss and Charge Generation in LAr from Microscopic Processes during Drift time

Volume Recombination:
$$e^- + Ar_2^+ \rightarrow Ar^{**} + Ar$$

 $S_{Loss}^R(e^-) = S_{Loss}^R(Ar_2^+) = -k_R n_e n_+ [m^{-3} s^{-1}]$

- Electron Attachment to el.negative Impurity X: $e^- + X \rightarrow X^ S^A_{Loss}(e^-) = - k_A n_e n_X^0 [m^{-3} s^{-1}]$
 - X concentration in LAr: n_X⁰ [m⁻³] from e-lifetime measurement, assumed constant in time and uniformly distributed in the Volume
- ▶ the loss of electrons by attachment corresponds to the generation of negative lons (X^-) : $S^A_{Gen}(X-) = -S^A_{Loss}(e^-) = + k_A n_X n_e [m^{-3} s^{-1}]$

► Ion-Ion Mutual Neutralization: $Ar_2^+ + X^- \rightarrow Ar^{**} + Ar + X$ $S_{Loss}^{MN}(Ar_2^+) = S_{Loss}^{MN}(X^-) = -k_{MN} n_- n_+ [m^{-3} s^{-1}]$

Rate Constants of Processes during drift time

Table: Rate Constants

Process	El. Field	Rate Constant	Ref.
(e^-, X) Attachment to Impurity $X = H_2O$ $X = O_2$	100 V/cm 500 V/cm	$k_A = 1.4 \times 10^{-15} m^3 s^{-1}$ $k_A = 1.4 \times 10^{-16} m^3 s^{-1}$	Pordes (MTS + PrM data) Bakale
(e^-, Ar_2^+) Recombination	500 V/cm	$k_R = 1.1 \times 10^{-10} m^3 s^{-1}$	Shinsaka
(X^-, Ar_2^+) Mutual Neutralization $X^- = H_2 O^-$ $X^- = O_2^-$	no dependence reported	$k_{MN} = 2.8 \times 10^{-13} m^3 s^{-1}$ $k_{MN} = 1.8 \times 10^{-13} m^3 s^{-1}$	Miller Miller

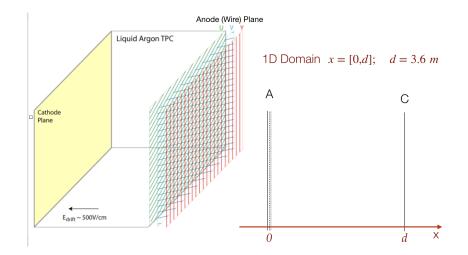
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Drift velocity and mobility

Table: Drift velocity (and mobility) for e^- , lon^+ , lon^-

	Mobility	El. Field	Drift Velocity	Ref.
e	$\mu_e = 3.2 \times 10^{-2} \frac{m^2}{V s}$	500 V/cm	$v_d^e = 1.61 \times 10^{+3} \frac{m}{s}$	[Walkowiak]
Ar_2^+	$\mu_{+} = 8.0 \times 10^{-8} \frac{m^2}{V s}$	500 V/cm	$v_d^+ = 4 \times 10^{-3} \frac{m}{s}$	[Rutherfoord-ATLAS] [Dey et al.] [Henson] [Davis et al.]+[Rice (Theory)]
$X^- = H_2 O^-$ $X^- = O_2^-$	$\mu_{-} = 9.2 \times 10^{-8} \frac{m^2}{V_{\cdot} s}$ $\mu_{-} = 7.8 \times 10^{-8} \frac{m^2}{V_{\cdot} s}$	500 V/cm 500 V/cm	$v_d^- = 4.6 \times 10^{-3} \frac{m}{s}$ $v_d^- = 3.9 \times 10^{-3} \frac{m}{s}$	FLC guesstimate [Dey]: ref. to [Davis et al.] +[Rice (Theory)]

Reference System and 1D Domain



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conservation Laws and Transport through the LAr Volume for 3 Charge Species and Electric Field distortion

► Expanding from Eq.5 → System of differential equations for the Conservation and Transport of all particles generated in the LArTPC volume and the Electric Field distortion by Space Charge effect

$$\begin{cases} -\mu_{e} \ n_{e} \ \frac{\partial E}{\partial x} - v_{d}^{e} \ \frac{\partial n_{e}}{\partial x} = + n_{pair}^{i} - k_{R} \ n_{+} \ n_{e} - k_{A} \ n_{X} \ n_{e} \\ -\mu_{+} \ n_{+} \ \frac{\partial E}{\partial x} + v_{d}^{+} \ \frac{\partial n_{+}}{\partial x} = + n_{pair}^{i} - k_{R} \ n_{+} \ n_{e} - k_{MN} \ n_{-} \ n_{+} \\ -\mu_{-} \ n_{-} \ \frac{\partial E}{\partial x} - v_{d}^{-} \ \frac{\partial n_{-}}{\partial x} = + k_{A} \ n_{X}^{0} \ n_{e} - k_{MN} \ n_{-} \ n_{+} \\ \frac{\partial E}{\partial x} = \frac{1}{\epsilon_{0}\epsilon_{r}} (n_{+} - n_{-} - n_{e}) \end{cases}$$

$$(6)$$

with (liquid) Ar relative permittivity $\epsilon_r = 1.51$

 Solution (numerical integration): Charge Densities n₊(x), n₋(x), n_e(x) and E Field E(x) in the 1-D domain x = [0, d]

Boundary Conditions

The following set of boundary conditions holds:

$$\begin{cases} n_e(x = d) = 0 \\ n_+(x = 0) = 0 \\ n_-(x = d) = 0 \\ E(x = 0) = \beta E_0 \end{cases}$$
(7)

(日) (同) (三) (三) (三) (○) (○)

- ► $n_X^0(\text{const.}) = 3 \cdot 4.6 \times 10^{16} m^{-3}$ density corresponds to 3 ppt(w) impurity $X = H_2O$ concentration (ref. lifetime $\tau_e = 6\text{ms}$)
- ► the parameter β is determined iteratively: Start value: $\beta = 0.75$ (Ionization process only) determined in correspondence of $\alpha = \frac{d}{E_0} \sqrt{\frac{n_{pair}^i}{e_0 \epsilon_r \mu_+}} = 1.2$ Final value: $\beta = 0.79$ (Ionization + A + MN + VR)

Solution: Electric Field Distortion from Space Charge

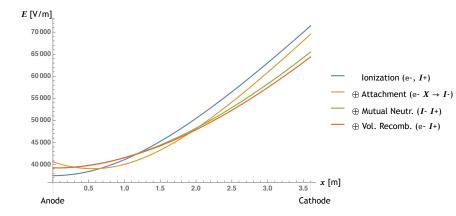


Figure: Electric Field Distortion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Ar_2^+ lon-density distribution

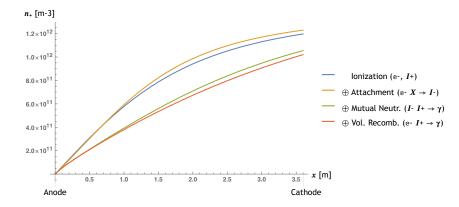


Figure: Positive Ion Density

(日)、

э

Solution: el-density distribution

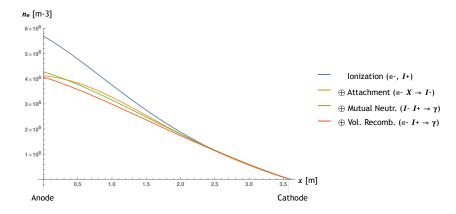


Figure: Electrons Density

(日)、

э

Solution: X^- lon-density distribution

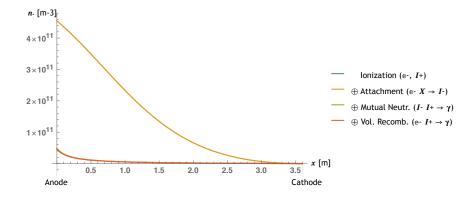


Figure: Negative Ions Density

(日)、

æ

Photon Emission during Ion Transport

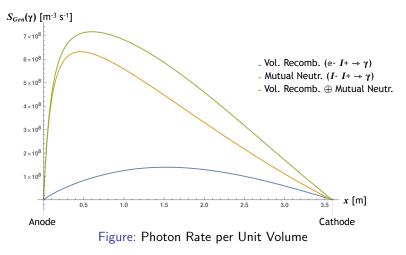
Assuming One VUV Photon (γ) emitted per interaction process:

- ▶ Photon Emission Rate from Volume Recombination Process: $S_{Gen}^{R}(\gamma) = k_{R} n_{e} n_{+} [m^{-3} s^{-1}]$
- ▶ Photon Emission Rate from Mutual Neutralization Process: $S_{Gen}^{MN}(\gamma) = k_{MN} n_{-} n_{+} [m^{-3} s^{-1}]$

Total Photon emission rate in the protoDUNE TPC Volume:

$$R_{Tot}^{\gamma} [s^{-1}] = \int (S_{Gen}^{R}(\gamma) + S_{Gen}^{MN}(\gamma)) \, dV = \Delta z \Delta y \int_{0}^{d} (S_{Gen}^{R}(\gamma) + S_{Gen}^{MN}(\gamma)) \, dx$$
(8)

Solution: photon rate distribution



Total Rate $R_{tot}^{\gamma}~=~6.7 imes10^{10}~\gamma/s$

BACK-UP

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

e⁻ Charge Survival probability along drift distance

- e^- Charge Generation rate per unit Volume: $S^i_{Gen}(e^-) = n^i_{Pairs} [m^{-3} s^{-1}]$
- e^- Charge Loss rate per unit Volume due to Attachment: $S^A_{Loss}(e^-) = - k_A n_e n_X^0 [m^{-3} s^{-1}]$
- e^- Charge Loss rate per unit Volume due to Volume Recombination: $S^R_{Loss}(e^-) = - k_R n_e n_+ [m^{-3} s^{-1}]$
- ▶ e^- Charge Survival rate per unit Volume: $S^i_{Gen}(e^-) + S^A_{Loss}(e^-) + S^R_{Loss}(e^-) =$ $n^i_{Pairs} - k_A n_e n^0_X - k_R n_e n_+ [m^{-3} s^{-1}]$

$$\begin{array}{l} \bullet \quad e^{-} \text{ Charge Survival Probability:} \\ \frac{S_{Gen}^{i}(e^{-}) + S_{Loss}^{A,R}(e^{-})}{S_{Gen}^{i}(e^{-})} \quad = \quad \frac{n_{Pairs}^{i} - k_{A} \ n_{e} \ n_{A}^{0} - k_{R} \ n_{e} \ n_{+}}{n_{Pairs}^{i}} \quad = \quad \mathbf{P}_{e}^{Surv}(x) \end{array}$$

Solution: e⁻ Charge Survival Probability

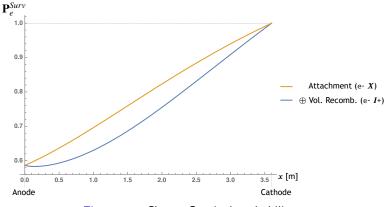
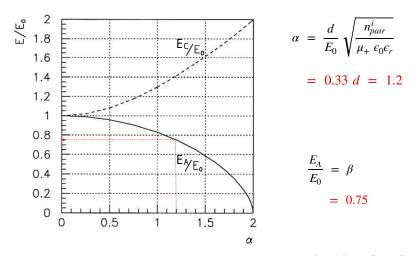


Figure: *e*⁻ Charge Survival probability

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The α Parameter and the E Field boundary Condition



◆□> <圖> < => < => < => < => < <</p>