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• https://cdcvs.fnal.gov/redmine/projects/art/wiki#Multithreaded-processing-as-of-art-3

MT links
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https://cdcvs.fnal.gov/redmine/projects/art/wiki


Encouraged migration path
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• If you look at the “Upgrade to art 
3” link, you’ll see a flow chart for
how to upgrade to art 3.

• Although this is the encouraged
path, it can be difficult to adopt in
LArSoft, which has ~50 services
and ~250 modules.



• I will save the more thorough description of how to write thread-safe code for the 
LArSoft workshop in June.

• No single approach works for each modules/services.

• The main thing to remember is:
Data races occur when mutable data is shared among threads.

• Examples of shared data in framework job:
– Services (shared among threads and events)
– Modules (possibly shared among threads and events)

Approaching upgrades
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Best way to make code thread-safe: 
stop sharing data, or make the data immutable. 
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Best way to make code thread-safe: 
stop sharing data, or make the data immutable. 



Making data immutable
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• Many times, it is not necessary to have mutable data.



Making data immutable
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class FilterNoMCParticles : public art::SharedFilter {
public:

explicit FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&);

private:
bool filter(art::Event&, art::ProcessingFrame const&) override;
std::string const fLArG4ModuleLabel;

};

• Many times, it is not necessary to have mutable data.
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class FilterNoMCParticles : public art::SharedFilter {
public:

explicit FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&);

private:
bool filter(art::Event&, art::ProcessingFrame const&) override;
std::string const fLArG4ModuleLabel;

};

FilterNoMCParticles::FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&)

: SharedFilter{pset}
, fLArG4ModuleLabel{pset.get<std::string>("LArG4ModuleLabel", "NoLabel")}

{
async<art::InEvent>();

}

• Many times, it is not necessary to have mutable data.
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class FilterNoMCParticles : public art::SharedFilter {
public:

explicit FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&);

private:
bool filter(art::Event&, art::ProcessingFrame const&) override;
std::string const fLArG4ModuleLabel;

};

FilterNoMCParticles::FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&)

: SharedFilter{pset}
, fLArG4ModuleLabel{pset.get<std::string>("LArG4ModuleLabel", "NoLabel")}

{
async<art::InEvent>();

}

bool FilterNoMCParticles::filter(art::Event& evt, art::ProcessingFrame const&) {
auto const& mcps = *evt.getValidHandle<std::vector<simb::MCParticle>>(fLArG4ModuleLabel);
return not mcps.empty();

}



• Many times, it is not necessary to have mutable data.

• If it is necessary, at least restrict the places where data are allowed to be mutable.
– To the extent possible, remove interface that modifies data
– Since the art framework does not support program reconfiguration (with the

exception of classes that inherit from evdb::Reconfigurable), all 
reconfigure functions should be removed.

• I am working on some branches where the reconfigure functions have been 
removed.

Making data immutable
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• Fewer services, perhaps much fewer
– LArFFT service replaced by dedicated class (Mike Wang) 
– More interactions through the Event, SubRun, and Run, which are guaranteed to have a 

thread-safe interface

What to expect in the future
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– If necessary, create ServiceHandles in modules, services, and sources.  If a function 
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dereferenced handle to the function.

What to expect in the future
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double get_offset() {
return ServiceHandle<Utility>{}->offset();

}

double get_offset(Utility const& util) {
return util.offset();

}

Discouraged Encouraged



• Making code thread-safe is not easy.  

• We don’t want to upgrade code that nobody uses!

• Please take a look at the following lists:
– https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/MT_status_of_LArSoft_modules
– https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/Migration_path_for_LArSoft_services_in_art_3/

• If you are aware of any modules/services that are not in use, please let us know at 
scisoft-team@fnal.gov.

• If you are unsure of the thread-safety implications of your code, ask us!

A request
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