
MT in LArSoft update
Kyle J. Knoepfel
23 April 2019
LArSoft coordination meeting

• https://cdcvs.fnal.gov/redmine/projects/art/wiki#Multithreaded-processing-as-of-art-3

MT links

4/22/19 LArSoft coordination meeting2

https://cdcvs.fnal.gov/redmine/projects/art/wiki

Encouraged migration path

4/22/19 LArSoft coordination meeting3

• If you look at the “Upgrade to art
3” link, you’ll see a flow chart for
how to upgrade to art 3.

• Although this is the encouraged
path, it can be difficult to adopt in
LArSoft, which has ~50 services
and ~250 modules.

• I will save the more thorough description of how to write thread-safe code for the
LArSoft workshop in June.

• No single approach works for each modules/services.

• The main thing to remember is:
Data races occur when mutable data is shared among threads.

• Examples of shared data in framework job:
– Services (shared among threads and events)
– Modules (possibly shared among threads and events)

Approaching upgrades

4/22/19 LArSoft coordination meeting4

• I will save the more thorough description of how to write thread-safe code for the
LArSoft workshop in June.

• No single approach works for each modules/services.

• The main thing to remember is:
Data races occur when mutable data is shared among threads.

• Examples of shared data in framework job:
– Services (shared among threads and events)
– Modules (possibly shared among threads and events)

Approaching upgrades

4/22/19 LArSoft coordination meeting5

Best way to make code thread-safe:
stop sharing data, or make the data immutable.

• I will save the more thorough description of how to write thread-safe code for the
LArSoft workshop in June.

• No single approach works for each modules/services.

• The main thing to remember is:
Data races occur when mutable data is shared among threads.

• Examples of shared data in framework job:
– Services (shared among threads and events)
– Modules (possibly shared among threads and events)

Approaching upgrades

4/22/19 LArSoft coordination meeting6

Best way to make code thread-safe:
stop sharing data, or make the data immutable.

Making data immutable

4/22/19 LArSoft coordination meeting7

• Many times, it is not necessary to have mutable data.

Making data immutable

4/22/19 LArSoft coordination meeting8

class FilterNoMCParticles : public art::SharedFilter {
public:

explicit FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&);

private:
bool filter(art::Event&, art::ProcessingFrame const&) override;
std::string const fLArG4ModuleLabel;

};

• Many times, it is not necessary to have mutable data.

Making data immutable

4/22/19 LArSoft coordination meeting9

class FilterNoMCParticles : public art::SharedFilter {
public:

explicit FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&);

private:
bool filter(art::Event&, art::ProcessingFrame const&) override;
std::string const fLArG4ModuleLabel;

};

FilterNoMCParticles::FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&)

: SharedFilter{pset}
, fLArG4ModuleLabel{pset.get<std::string>("LArG4ModuleLabel", "NoLabel")}

{
async<art::InEvent>();

}

• Many times, it is not necessary to have mutable data.

• Many times, it is not necessary to have mutable data.

Making data immutable

4/22/19 LArSoft coordination meeting10

class FilterNoMCParticles : public art::SharedFilter {
public:

explicit FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&);

private:
bool filter(art::Event&, art::ProcessingFrame const&) override;
std::string const fLArG4ModuleLabel;

};

FilterNoMCParticles::FilterNoMCParticles(fhicl::ParameterSet const& pset,
art::ProcessingFrame const&)

: SharedFilter{pset}
, fLArG4ModuleLabel{pset.get<std::string>("LArG4ModuleLabel", "NoLabel")}

{
async<art::InEvent>();

}

bool FilterNoMCParticles::filter(art::Event& evt, art::ProcessingFrame const&) {
auto const& mcps = *evt.getValidHandle<std::vector<simb::MCParticle>>(fLArG4ModuleLabel);
return not mcps.empty();

}

• Many times, it is not necessary to have mutable data.

• If it is necessary, at least restrict the places where data are allowed to be mutable.
– To the extent possible, remove interface that modifies data
– Since the art framework does not support program reconfiguration (with the

exception of classes that inherit from evdb::Reconfigurable), all
reconfigure functions should be removed.

• I am working on some branches where the reconfigure functions have been
removed.

Making data immutable

4/22/19 LArSoft coordination meeting11

• Fewer services, perhaps much fewer
– LArFFT service replaced by dedicated class (Mike Wang)
– More interactions through the Event, SubRun, and Run, which are guaranteed to have a

thread-safe interface

What to expect in the future

4/22/19 LArSoft coordination meeting12

• Fewer services, perhaps much fewer
– LArFFT service replaced by dedicated class (Mike Wang)
– More interactions through the Event, SubRun, and Run, which are guaranteed to have a

thread-safe interface

• Constrained usage of ServiceHandles
– art will likely make it difficult to create ServiceHandles outside of a module, service, or

source.
– If necessary, create ServiceHandles in modules, services, and sources. If a function

needs the functionality provided by a service, create a handle in the module, and pass the
dereferenced handle to the function.

What to expect in the future

4/22/19 LArSoft coordination meeting13

• Fewer services, perhaps much fewer
– LArFFT service replaced by dedicated class (Mike Wang)
– More interactions through the Event, SubRun, and Run, which are guaranteed to have a

thread-safe interface

• Constrained usage of ServiceHandles
– art will likely make it difficult to create ServiceHandles outside of a module, service, or

source.
– If necessary, create ServiceHandles in modules, services, and sources. If a function

needs the functionality provided by a service, create a handle in the module, and pass the
dereferenced handle to the function.

What to expect in the future

4/22/19 LArSoft coordination meeting14

double get_offset() {
return ServiceHandle<Utility>{}->offset();

}

double get_offset(Utility const& util) {
return util.offset();

}

Discouraged Encouraged

• Making code thread-safe is not easy.

• We don’t want to upgrade code that nobody uses!

• Please take a look at the following lists:
– https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/MT_status_of_LArSoft_modules
– https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/Migration_path_for_LArSoft_services_in_art_3/

• If you are aware of any modules/services that are not in use, please let us know at
scisoft-team@fnal.gov.

• If you are unsure of the thread-safety implications of your code, ask us!

A request

4/22/19 LArSoft coordination meeting15

https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/MT_status_of_LArSoft_modules
https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/MT_status_of_LArSoft_modules
https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/Migration_path_for_LArSoft_services_in_art_3/
https://cdcvs.fnal.gov/redmine/projects/knoepfel/wiki/Migration_path_for_LArSoft_services_in_art_3/
mailto:scisoft-team@fnal.gov

