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Hit Tagging Goal and Motivation

e Want hit by hit level track shower separation

e Useful for generating calibration samples
e Michel electrons

e Delta ray removal for muon calibrations

e Potential to improve current algorithms with integration of
alternative hit level PID
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Implementation

e Hit tagging is implemented
with a simple CNN

e Input images are 48 x 48 pixels
drawn from deconvoluted

Michel, and Empty
e Truth obtained by backtracking
the true charge deposits

e Michels are in both EM and
Michel category

p "= .
waveforms
* 4 types Of imageS: EM' TraCk' . .
e Goal of the network is to . .

identify the source of the charge
at the centre of the image
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Network Architecture

Final network architecture

em trk none ... :::s michel out

| dense2
e Single convolutional layer CNN pr—
e Two dense layers

densel

e In: 48 x 48 deconvoluted ADC |
e Out: (EM, Track, Empty) + (Michel) Tt
L] Welghted loss: L =0.1- Lfs + Lm dropout1 \
e Dropout for regularisation

convl

input
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Training Samples

e Training data was built using MCC11 simulations

e SCE on
e Fluid flow on
e All beam energies in sample

e Data samples split into training, test, and validation

Patch Type EM Track Empty Michel
Training 13,493,982 | 9,727,604 | 2,517,882 | 731,456
Validation 734,673 562,038 141,388 42,727
Test 764,659 518,805 139,987 39,674
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Monitoring of Training

Training monitored with Tensorboard

e Learned fast with negligible validation improvement after 1st epoch
e Dropout successful in preventing over—training

Overall Loss Track, Shower, Empty Loss
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Performance Tests MC

Shower Classifier Output
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Entries

Tests MC

Michel Classifier Output
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Basic clustering helps a lot here

F1 Score
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Performance Tests MC

Shower ROC
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Performance Tests MC

Michel ROC
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Performance Tests Data

e 2D deconvoluted data used for tests
e Run number 5387
e Tests were done by comparing with the output of Pandora

e Cross validation of algorithms
e Makes interpretation a little more difficult due to effects for both
algorithms

e Looked at CNN score for hits in Pandora Tracks and Pandora
Showers
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Performance Tests Data

Hits Labelled with CNN Class
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Performance Tests Data

Time Coordinate

Hits Labelled with Pandora Agreement Level
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Performance Tests Data
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Track Classifier Output for Hits in Pandora Tracks
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Ideas for Improvement

CNN slow on CPU’s, ~ 40s / event

e Would like to use deeper
networks but time is prohibitive

e Often redundancy with
neighbouring network
evaluations

e Slow running due to many
image creations and network
evaluations

e Semantic segmentation could
be faster

e Evaluate many hits at

once
e Fewer images and
evaluations
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Tagging Use Cases

Some potential uses for labelled hits

e Michel electron reconstruction (In progress)

e Defining clean calibration samples, e.g. removing delta hits for muon
samples

e Integration into current algorithms to aid reconstruction
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