Preliminary Results on v_e/v_τ **selection at DUNE FD.** CP violation & v_τ physics perspectives.

Thomas Kosc (<u>kosc@ipnl.in2p3.fr</u>) PhD student at IPNL (France)

Supervisor : Dario AUTIERO

<u>Thesis</u> : Development of the CP violation search analysis in DUNE and assessment of the related systematics.

Thomas Kosc / IPNL (Lyon, France)

1

A priori discussion

- Some work on tau selection in previous meetings:
 - Herilala/Miriama thesis. ~80% of v_e CC rejection and ~60% of v_τ CC (τ —>e⁻) kept, based on GENIE (version ?) and the ROOT Toolkit for Multivariate Analysis.
 - \circ v_{τ} appereance at NOMAD (R. Petti). Likelihood approach, up to ${\sim}1\%$ background contamination ?
- Elaborate an analysis of v_{τ} detection, based on simulations (GENIE v3.0.2). Outlook of CP violation analysis (v_{τ} background rejection) and v_{τ} physics (v_{τ} selection).
- This talk focuses **only on CC** v_{τ} **with** τ —>e⁻+2v (easy channel and background of v_e CC, but only ~17% of total branching ratio). Other channels require further analysis. The v_{τ} come from the oscillation of v_{μ} .
- v_e are restricted to beam contamination at production point (without oscillation). v_e from oscillation will depend on PMNS parameters, included later.
- Rely on GENIE only. τ decay ? v_{τ} cross section ? Comparison with other generators ?

Tools & Method

- DUNE FD setup is implemented only via the flux. See the file I used: *histos_g4lbne_v3r5p4_QGSP_BERT_OptimizedEngineeredNov2017_neutrino_LBNEFD_fastmc.root*. Results are flux dependent, any comparison should be careful with using the same flux.
- Neutrino cross sections, GENIE pre-computed file NULL_G1802a00000-k500-e1000 (see "Associated data release" on http://www.genie-mc.org/).
- Two files generated and used for the time being: oscillated $v_{\mu} \longrightarrow v_{\tau}$ and unoscillated v_e contamination. Both at FD.

- No reconstruction effects (smearing) implemented yet. Should come in a near future.
- Easier to start with v_e from beam contamination rather than oscillated v_{μ} —> v_e

Kinematics (neutrons removed !)

- Basic idea: distinguish CC v_e from CC v_τ with $\tau^- \rightarrow e^- + \overline{v}_e + v_\tau$ using kinematical criteria (NOMAD).
- Transverse plane kinematics (TPK) (remove uncertainties due to incoming neutrino momentum).

Small missing momentum, so ϕ_{he} close to 180°.

Unseen neutrinos increase the missing momentum and change the angles distributions.

• Kinetic variables at play:

• $K_{e^{-}}$ = kinetic energy of the electron.

 $\begin{array}{c} \text{momentum} \\ \textbf{p}_{miss} \end{array} \mathrel{\stackrel{\bullet}{=}} p_{e^-}^{(tr)}, \ p_{had}^{(tr)}, \ p_{miss}^{(tr)} = \text{tranverse} \\ \text{momenta.} \end{array}$

 Angles between transverse momentum φ_{he}, φ_{hm}, φ_{em}.

•
$$p_{asym} = \frac{p_{e^-}^{(tr)} - p_{had}^{(tr)}}{p_{e^-}^{(tr)} + p_{had}^{(tr)}}$$

Distributions

0.35_L

0.3

0.25

0.2

0.15

0.1

0.05

0<mark></mark>

Ke-

HadronicTrMomentum

 ν_{e}

ν_τ

(he

\$em

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Momentum (GeV/c²)

Correlations, two examples.

$$[\phi_{he}, p_{miss}^{(tr)}]$$

 $\left[p_{had}^{(tr)}, p_{miss}^{(tr)}\right]$

7 8 P_{miss} (GeV)

Likelihood analysis

Given an event (ν_e or ν_τ) with a set of kinematic variables, we compute the likelihood ratio *L*.

 L_S (resp. L_B) is the probability that a given kinematic variable (or a correlation of several of them) occurs for the signal (resp. background).

• Comparison of the signal/background likelihood distribution informs about the separability power of the kinematic variable (or of their correlation).

Some likelihood plots

 $L\left(\left[\phi_{he}, p_{miss}^{(tr)}\right] K_{e^{-}}\right)$

 $L\left(\left[p_{had}^{(tr)},p_{miss}^{(tr)}\right]\phi_{he}\right)$

 The cut at 0 is shown as a matter of indication. We use
 integral likelihood
 distributions for more
 quantitative results.

• Using different combinations of the 8 variables, hard to get much improvement. Cuts at 0 reach ~[75;80]% of v_{τ} selection and some [25;30]% of v_e contamination.

A posteriori check :

A posteriori check :

Outlook/Discussion

• Preliminary results plausible/encouraging. Though hard to get much improvement (looking for a good combination of variables isn't obvious). Simple cuts at 0 for likelihood ratio leads to ~75% of signal (oscillated v_{μ} —> v_{τ}) selection and ~30% of background (v_e beam) contamination.

	Expected Events (3.5 years staged)
ν mode	
ν_e Signal NO (IO)	1346 (612)
$\bar{\nu}_e$ Signal NO (IO)	19 (34)
Total Signal NO (IO)	1365 (646)
Beam $\nu_e + \bar{\nu}_e$ CC background	234
NC background	83
$\overline{ u_{ au}} + ar{ u}_{ au}$ CC background	37
$ u_{\mu} + ar{ u}_{\mu} \overline{CC} background$	17
Total background	371

Apply the efficiencies obtained to $\sim 234 n_e$ CC beam bck and $\sim 37 n_t$ CC for 3.5 years staged.

<u>DUNE TDR, Vol 2, p91</u>

- Add analysis with neutrons and see the difference as a crosscheck.
- Results not so good... Why ? Distinguish QEL/RES/DIS as a first clue.
- Include a reconstruction (smearing at fewer extent), detector response and geometry.
- Reproduce analysis with oscillated v_e .
- Include a PMNS parametrisation of the analysis (i.e work on the flux part).

Back up: FD flux

v_e from beam contamination.

ν_{τ} from ν_{μ} oscillation

