LArPix v1 testing

Peter Madigan DUNE Pixel Readout Weekly Meeting 2019/5/9

LArPix v1 demonstrated performance

• See paper: <u>arXiv:1808.02969</u>

Main performance specs:

- Leakage current: 500e-/ms (warm), 500e-/s (cold)
- Gain: 1mV/250e- (rough)
- Pedestal: 350mV (warm), 550mV (cold)
- Pedestal RMS: 1.5mV (warm), 1.1mV (cold)
- Trigger threshold: 12-18mV (both)
- Power: 62uW/ch (tuned supply voltages)

LArPix v1 "quirks"

• See appendix for complete description

Quick list of quirks / issues:

- ADC bit errors (Missing MSB and LSB)
- Test pulser issues (risetime and linearity)
- Bad initial configuration
- Deadtime
- Buffer risetime
- FIFO timestamp
- Leakage current (due to surface properties)
- Periodic reset
- Daisy chain IO difficulties

Testing of chip packaging with v1 ASIC

LArPix v1.5 anode

Dedicated test anode to evaluate chip packaging and single-board PCB design

- Unified 8-layer board construction
- Hosts 4 QFP100 packaged LArPix v1 ASICs
- 120 active channels with square pixel pads
- 4 external test-pulse channels (1 per chip)
- 4 unbonded reference channels (1 per chip)
- MISO test point for each chip
- Diode array for ESD protection on external MISO/MOSI lines

Basic functionality

Visual inspection

OK, some damage to one pin but did not introduce a short or break

Continuity

 OK, no observed shorts or breaks between external lines or on chip pads

IO functionality

1/20 (95%) chips showed a stuck bit in the MISO data packet

Noise

 OK, no significant increase in pedestal RMS from wirebonded board

Time-varying leakage current

For 2/20 chips (chips 3, 5 of PCB4), observe time-dependent leakage current

- Initial testing showed very high leakage current that was not resolved with cleaning
- Subsequent tests show declining leakage current over the next 10 days

Cryogenic testing

Tested 19 remaining chips in LN2 bath

Results:

- No failures during cryocycle
- Noise and leakage performance is comparable to wire-bonded chips
- Multi-cycle testing of one board (4 chips) shows no failures after at least 5 rapid cryocycles
 - Note: failed header pin connector during rapid cycle testing

Capacitive pickup

Observed significant capacitive pickup from digital IO lines

Measured capacitance between MOSI/MISO and front-end to be ~50aF (typical) to ~1fF(worst)

Strongest coupling for channels adjacent to trace under chip

BERKELEY LAB DUNE

Capacitive pickup mitigation

Coupling increases ~1.5x in LN2 suggesting that field lines exit chip packaging

Tested mitigating capacitive pickup via grounded shield above chip

• v2 will also have the capability for differential signaling, further reducing capacitive effect

Channel

Packaging and assembly yield

- 3 bad chips were identified by vendor
- Wirebonding failure

No issues encountered during assembly

PCB6 chip 12 had stuck bit in outgoing packet

PCB2 chip 3had all front-end channels saturated

No issues encountered during cryo-tests

Stage / test	Input [chips]	Pass [chips]	Fail [chips]	Yield [chips]
Packaging	158	155	3	98.1%
Assembly	20	20	0	100%
IO functionality	20	19	1	95%
Front-end functionality	20	19	1	95%
Cryo functionality	19*	19*	0*	100%*
			Net:	88%

*includes chip with saturated front-end, since digital functionality was ok in LN2

Summary of package chip testing

- Overall dicing to operation in LN2 yield is ~90%
- No cryogenic failures have been observed with packaged chips
- Time dependent leakage current physical process is still unclear
- Very small capacitances to large voltage swings lead to significant induced signals, mitigation will be important for low threshold operation
 - Potential avenues to be pursued:
 - differential signaling with v2 chip
 - package shielding (at what cost?)
 - external shielding (at what design headaches?)

Continuing packaging testing efforts

- Compare measured capacitance with/without packaging (and potentially with wirebonds of different lengths)
 - Appears as though the capacitive coupling has increased (since it was not noticed before), this should be confirmed
- Perform a more complete assessment of capacitive pickup with a proxy mitigation technique
- Develop a socket board to repeat baseline tests on remaining 135 chips
- Perform a replacement of the non-functioning chips and assess performance
- Investigate time varying leakage current closer (revisit data and map out channel variations)
- Produce 5 additional DAQ boards for v1 ASIC for groups interested in getting involved (UTA, Caltech, CSU)
 - Waiting on component delivery
 - In recent visit, Zoya and Leon (Caltech) were up and running with control software in just a couple days
 - Documentation is ongoing

Broader efforts in preparation for v2 testing

- Testing database and tracking:
 - Have: basic web-app and database with QR code support
 - Need: hosting (nersc?) and determination of QR code attachment (cryogenic stickers or production etching)
- Control software revamp:
 - Have: larpix-control software for v1 ASIC and IO structure
 - Need: larpix-control software for v2 ASIC and IO structure
 - Want: incorporate a standard testing library that helps automate running tests / uploading results to database
- DAQ system:
 - Have: a python-based DAQ framework and webpage gui (Sam K)
 - Need: implement and use this in standard operation

Lots of places for groups to get involved!

Appendix

Bad default configuration

Issue: Default configuration threshold is too low and one bit is incorrectly set

Consequences:

- Chips quickly saturate FIFOs and continuously produce data on reset
- No packet priority in daisy chain, so downstream chips cannot be configured with upstream chips in saturated state

Temporary fix: None, just be aware of this during start up. Care must be taken to configure chips in the proper daisy chain sequence

v2 fix: Default configuration will have all channels masked

ADC bug

Issue: Race condition in SAR ADC implementation

Consequences: Faulty MSB in range of 0-128 and stuck LSB in ADC data

Temporary fix: Tune VREF and VCM for 6-bit operation near signal region

- VREF = max(Vsig) + max(Vped)
- VCM > 2min(Vped) max(Vped) max(Vsig) > 200mV
- e.g. min(Vped) = 335, max(Vped) = 365, max(Vsig) = 100 -> VREF = 465, VCM = 205

v2 fix: Already fixed in design, confirmed with full timing simulations

Front end timing diagram

FIFO timestamping

Issue: Packets are timestamped when they enter the FIFO, not when the trigger is registered

Consequences: Multiple triggers that occur at the same time on the same chip will be timestamped sequentially with 3 tick offsets

Temporary fix: None, just be aware that there is a timing resolution degradation for multiple simultaneous triggers

v2 fix: Minor modifications to the trigger logic -> latch timestamp when discriminator fires

Pulse injection issues

Issues:

- Testpulser DAC is slow
- Testpulser is non-linear for low DAC values (<~70)

Temporary fix: Only test pulse in the upper half of DAC values

v2 fix: update DAC implementation to reduce drop out and increase speed

Channel dead-time

Issue: Channel reset occurs after ADC conversion

Consequences: Substantial dead time is introduced immediately following a channel trigger

Temporary fix:

- Utilize burst mode to digitize multiple times
- Increase digitization delay (sample_cycles)
- v2 fix: Minor changes to the trigger logic

Primitive simulation of charge loss due to dead-time:

Buffer rise time

Issue: Buffer output from front-end CSA into ADC and discriminator has a rise time of ~1.6us

Consequences:

- Introduces dead-time
 - charge collected on front-end will only be reflected in ADC ~1.6us after collection
- Introduces secondary triggers
 - After reset, takes a while for output to settle to pedestal. Large amplitude signals can induce a ghost trigger

Temporary fix: increase digitization delay (sample_cycles) to let output settle before digitizing v2 fix:

- reduce capacitive load on buffer
- increase buffer bias current

Leakage current

Issue: Surface properties can dramatically effect observed leakage current into frontend

Consequences: leakage current quickly integrates producing a high trigger rate on affected channels

Fix: Clean PCB surfaces with isopropanol*

*works in many cases, see description of chips with time-dependent leakage

Periodic reset

Issue: Periodic reset occurs regardless of channel's trigger state

Consequences: If periodic reset occurs during trigger, signal charge can be flushed before ADC latch

Temporary fix: None, just keep in mind that when periodic reset is enabled

- a small number of triggers may show subthreshold charge
- large digitization delays (sample_cycles) increase the likelihood of reset occurring during trigger
- v2 fix: Periodic reset is ignored if channel has been triggered

Daisy chain IO troubles

Issue: With daisy chain IO structure, a single chip failure results in full daisy chain failure

Consequences:

- Difficult to diagnose chip failures without test points
- Anodes are particularly susceptible to single chip failures

Temporary fix: Include test points and bypass resistors on PCB to enable testing and re-routing of daisy chain

v2 fix: Switch to network IO structure (Hydra IO) that Dan has described elsewhere

