General issues with the implementation of theory models in generators

A. Nikolakopoulos , N. Jachowicz, K. Niewczas, J. T. Sobczyk , R. Gonzalez-Jimenez, J.M. Udias

GHENT UNIVERSITY

Outline

I. Nucleon complexity
 II. Nuclear complexity
 III. Final state interaction

Underlying message:
More exclusive signals \rightarrow higher dimensional problems

$v+N \rightarrow \pi+N+l$: counting variables

5 Four vectors $=5 \times 4=20$ variables

- 4 : on mass shell relations
- 4 : initial nucleon known (at rest)
- 4 : Energy-momentum conservation
- 3 : Freedom to choose reference frame

And invariance along q
(known direction of one four vector)
$=5$ independent variables
$\mathrm{E}_{\mathrm{v}}, \cos \theta_{1}, \mathrm{E}_{1}, \Omega_{\pi}^{*}$ or $\mathrm{E}_{\mathrm{v},} \mathrm{Q}^{2}, \mathrm{~W}, \Omega_{\pi}^{*}$

$v+N \rightarrow \pi+N+l:$ Born approximation

$\sigma \propto L^{\mu \nu}\left(k_{1}, k_{2}\right) \times H_{\mu \nu}\left(k, q, p_{2}\right)$
Leptonic part (PW approximation) \rightarrow known
Hadronic part \rightarrow modelling effort

Exploit these facts:
-Lepton tensor is known
-Hadronic part is invariant under rotation along q and is the product of Hadronic current with its conjugate
\rightarrow Separate the φ^{*} dependence
$\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]$

Separating the variables

$$
\begin{aligned}
& \text { Example for the A structure function: } \\
& A=L^{00} H_{00}+2 L^{30} H_{30}^{s}+L^{33} H_{33}+\frac{L^{11}+L^{22}}{2}\left(H_{11}+H_{22}\right)+2 i L^{12} H_{12}^{a}
\end{aligned}
$$

Here the Hadron tensor depends on 3 variables:
$\mathrm{W}, \mathrm{Q}^{2}, \cos \theta_{\pi}^{*}$ and $\varphi_{\pi}^{*}=0$
And in total one needs 15 elements of the hadron tensor

For inclusive:

Only A survives integration over pion angles:

$$
\frac{d \sigma}{d Q^{2} d W}=\frac{\mathcal{F}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[L^{00} W_{C C}+2 L^{30} W_{C L}+L^{33} W_{L L}+\frac{L^{11}+L^{22}}{2}\left(W_{T}\right)+i L^{12} W_{T^{\prime}}\right]
$$

And responses depend on Q^{2} and W
$\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]$

What we know from electro- and photoproduction

Many approaches in the literature:
-MAID07 -DCC (e.g. Sato and Lee) -Effective Lagrangian approaches,ChpT , ...

Ingredients:
-Nucleon resonances
-Background terms : Born term, Vector meson exchanges
-cross channel resonances
-Final state interactions

- ...
- Many parameters fitted to > 20000 datapoints:

Table 5. Masses and coupling constants for vector mesons, PS-PV mixing parameter Λ_{m}, and parameter A for the lowenergy correction of eq. (16).

	$m_{V}[\mathrm{MeV}]$	λ_{V}	$\tilde{g}_{V 1}$	$\tilde{g}_{V 2} / \tilde{g}_{V 1}$			
ω	783	0.314	16.3	-0.94			
ρ	770	0.103	1.8	12.7			
$\Lambda_{m}=423 \mathrm{MeV}$						$A=1.9 \times 10^{-3} / m_{\pi}^{+}$	$B=0.71 \mathrm{fm}$

Ingredients:

Table 12. The proton param and β as defined by eq. (47), is gitudinal amplitude at $Q^{2}=1$ values for the transverse am] by the real photon physics an

Proton	$A_{1 / 2}$		
	α	β	
$D_{13}(1520)$	7.77	1.09	0
$S_{11}(1535)$	1.61	0.70	
$S_{31}(1620)$	1.86	2.50	
$S_{11}(1650)$	1.45	0.62	
$D_{15}(1675)$	0.10	2.00	0
$F_{15}(1680)$	3.98	1.20	1
$D_{33}(1700)$	1.91	1.77	1
$P_{13}(1720)$	1.89	1.55	1

Table 13. The neutron para
The values for the transverse table 8. Further notation as i

	$A_{1 / 2}$		$A_{3 / 2}$		$S_{1 / 2}$		$S_{1 / 2}^{0}$
Neutron	α	β	α	β	α	β	
$D_{13}(1520)$	-0.53	1.55	0.58	1.75	15.7	1.57	13.6
$S_{11}(1535)$	4.75	1.69	-	-	0.36	1.55	28.5
$S_{11}(1650)$	0.13	1.55	-	-	-0.50	1.55	10.1
$D_{15}(1675)$	0.01	2.00	0.01	2.00	0.00	0.00	0.00
$F_{15}(1680)$	0.00	1.20	4.09	1.75	0.00	0.00	0.00
$P_{13}(1720)$	12.7	1.55	4.99	1.55	0.00	0.00	0.00

Table 6. Resonance masses M_{R}, widths Γ_{R}, single-pion branching ratios β_{π}, and angles ϕ_{R} as well as the parameters X_{R}, n_{E}, and n_{M} of the vertex function eq. (21).

N^{*}	M_{R}	Γ_{R}	β_{π}	ϕ_{R}	X_{R}	Proton		Neutron	
	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$		$[\mathrm{deg}]$					
$[\mathrm{MeV}]$	n_{E}	n_{M}	n_{E}	n_{M}					
$P_{33}(1232)$	1232	130	1.0	0.0	570	-1	2	-1	2
$P_{11}(1440)$	1440	350	0.70	-15	470	-	0	-	-1
$D_{13}(1520)$	1530	130	0.60	32	500	3	4	7	2
$S_{11}(1535)$	1535	100	0.40	8.2	500	2	-	2	-
$S_{31}(1620)$	1620	150	0.25	23	470	5	-	5	-
$S_{11}(1650)$	1690	100	0.85	7.0	500	4	-	4	-
$D_{15}(1675)$	1675	150	0.45	20	500	3	5	3	4
$F_{15}(1680)$	1680	135	0.70	10	500	3	3	2	2
$D_{33}(1700)$	1740	450	0.15	61	700	4	5	4	5
$P_{13}(1720)$	1740	250	0.20	0.0	500	3	3	3	3
$F_{35}(1905)$	1905	350	0.10	40	500	4	5	4	5
$P_{31}(1910)$	1910	250	0.25	35	500	-	1	-	1
$F_{37}(1950)$	1945	280	0.40	30	500	6	6	6	6

A. Nikolakopoulos

Many approaches -MAID07 -DC

What we know from electro- and photoproduction

Many approaches in the literature:
$\begin{array}{lll}0.314-16.3 & -0.94\end{array}$
-MAID07 -DCC (e.g. Sato and Lee) -Effective Lagrangian approaches, ${ }_{2}^{535 \%}{ }_{2}{ }^{8}$

Ingredients: Table 6. Resonance masses M_{R}, widths Γ_{R}, single-pion

and β as defin-Nucleon resonances
Background terms: Bornterm, Vector meson exchanges
-Final state interactions
-Many parameters fitted to > 20000 datapoints:

$S_{11}(1650)$	$A_{1 / 2}$	53 ± 16	22.2 ± 7.2	32	33
$D_{15}(1675)$	$A_{1 / 2}$	19 ± 8	18.0 ± 2.3	23	15
	$A_{3 / 2}$	15 ± 9	21.2 ± 1.4	24	22
$F_{15}(1680)$	$A_{1 / 2}$	-15 ± 6	-17.3 ± 1.4	-25	-25
	$A_{3 / 2}$	133 ± 12	133.6 ± 1.6	134	134
$D_{33}(1700)$	$A_{1 / 2}$	104 ± 15	125.4 ± 3.0	135	226
	$A_{3 / 2}$	85 ± 22	105.0 ± 3.2	213	210
$P_{13}(1720)$	$A_{1 / 2}$	18 ± 30	96.6 ± 3.4	55	73
	$A_{3 / 2}$	-19 ± 20	-39.0 ± 3.2	-32	-11
$F_{35}(1905)$	$A_{1 / 2}$	26 ± 11	21.3 ± 3.6	14	18
	$A_{3 / 2}$	-45 ± 20	-45.6 ± 4.7	-22	-28
$F_{37}(1950)$	$A_{1 / 2}$	-76 ± 12		-78	-94
	$A_{3 / 2}$	-97 ± 10		-101	-121

For neutrinos no such dataset is available

 The values for the transverse
table 8. Further notation as i

	$A_{1 / 2}$		$A_{3 / 2}$		$S_{1 / 2}$		$S_{1 / 2}^{0}$
Neutron	α	β	α	β	α	β	
$D_{13}(1520)$	-0.53	1.55	0.58	1.75	15.7	1.57	13.6
$S_{11}(1535)$	4.75	1.69		-	0.36	1.55	28.5
$S_{11}(1650)$	0.13	1.55			-0.50	1.55	10.1
$D_{15}(1675)$	0.01	2.00	0.01	2.00	0.00	0.00	0.00
$F_{15}(1680)$	0.00	1.20	4.09	1.75	0.00	0.00	0.00
$P_{13}(1720)$	12.7	NuFACT19, Daegu Korea	0.00				

Electroproduction data

$$
\begin{aligned}
& \frac{d \sigma_{\nu}}{d W d Q^{2} d \Omega^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right)+C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right] \\
& \text { Write lepton tensor for polarized electron explicitly } \\
& \frac{d \sigma_{e}}{d \Omega^{*}}=\sigma_{T}+\epsilon \sigma_{L}+\sqrt{2 \epsilon(1+\epsilon)} \sigma_{L T} \cos \left(\phi^{*}\right)+\epsilon \sigma T T \cos \left(2 \phi^{*}\right)+h \sqrt{2 \epsilon(1-\epsilon)} \sigma_{L T^{\prime}} \sin \phi^{*}
\end{aligned}
$$

Electroproduction data: $e+p \rightarrow n+\pi^{+}$

LEM from R. Gonzalez-Jimenez et al. Phys. Rev. D 95, 113007 (2017) Based on HNV model

Data from E89-038 CLAS
experiment, 1999, V. Burket, R.
Minehart
MAID07 :
Drechsel, D., Kamalov, S.S. \&
Tiator, L. Eur. Phys. J. A (2007) 34: 69

A. Nikolakopoulos

Electroproduction data: $e+p \rightarrow n+\pi^{+}$

$$
\frac{d \sigma_{e}}{d \Omega^{*}}=\underset{W=1.1 \mathrm{GeV}}{\sigma_{T}+\epsilon \sigma_{L}+\sqrt{2 \epsilon(1+\epsilon)} \sigma_{L T}} \cos \left(\phi^{*}\right)+\epsilon \sigma T T \cos \left(2 \phi^{*}\right)+h \sqrt{2 \epsilon(1-\epsilon)} \sigma_{L T^{\prime}} \sin \phi^{*}
$$

LEM from R. Gonzalez-Jimenez et al. Phys. Rev. D 95, 113007 (2017) Based on HNV model

Data from E89-038 CLAS experiment, 1999, V. Burket, R. Minehart

MAID07 :
Drechsel, D., Kamalov, S.S. \&
Tiator, L. Eur. Phys. J. A (2007) 34: 69
A. Nikolakopoulos

Electroproduction data: $e+p \rightarrow n+\pi^{*}$

$$
\frac{d \sigma_{e}}{d \Omega^{*}}=\sigma_{T}+\epsilon \sigma_{L}+\sqrt{2 \epsilon(1+\epsilon)} \sigma_{L T} \cos \left(\phi^{*}\right)+\epsilon \sigma T T \cos \left(2 \phi^{*}\right)+h \sqrt{2 \epsilon(1-\epsilon)} \sigma_{L T^{\prime}} \sin \phi^{*}
$$

LEM from R. Gonzalez-Jimenez et al. Phys. Rev. D 95, 113007 (2017) Based on HNV model

Data from E89-038 CLAS experiment, 1999, V. Burket, R. Minehart

MAID07:
Drechsel, D., Kamalov, S.S. \&
Tiator, L. Eur. Phys. J. A (2007) 34: 69

Structure functions for neutrinos

$\mathrm{E}=1 \mathrm{GeV} W_{\pi N}=1.23 \mathrm{GeV} Q^{2}=0.1 \mathrm{GeV}^{2} / c^{2}$

Angular distributions for neutrinos

HNV, DCC and LEM vary in structure functions, still more or less agree on angular cross section. (Around Delta peak)

Could this influence neutrino oscillation analysis?

Angular distributions for neutrinos

In (most) event generators:
Isotropic distribution in CMS.
\rightarrow Computationally easy

What is the difficulty?
× Time to compute cross section \rightarrow Actually rather fast

The problem is efficiency in Sampling the phase space

How to introduce the fivefold CS ?

Sample inclusive cross section in the traditional way:
$\frac{d \sigma}{d Q^{2} d W}=\frac{\mathcal{F}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[L^{00} W_{C C}+2 L^{30} W_{C L}+L^{33} W_{L L}+\frac{L^{11}+L^{22}}{2}\left(W_{T}\right)+i L^{12} W_{T^{\prime}}\right]$

Tabulate or Calculate in situ inclusive structure functions for the interaction

Functions only of Q2 and W, very fast interpolation in 2D.

This gives an event with Q2 and W

How to introduce the fivefold CS ?

given a Q2 and W , distribution of $\cos \theta^{*}$ is determined by A
$\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]$

A is a smooth function and can usually be interpolated by a polynomial of degree 2

How to introduce the fivefold CS ?

given a Q2 and W , distribution of $\cos \theta^{*}$ is determined by A

$$
\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]
$$

A is a smooth function and can usually be interpolated by a polynomial of degree 2

How to introduce the fivefold CS ?

given a Q 2 and W , distribution of $\cos \theta^{*}$ is determined by A
$\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]$

A is a smooth function and can usually be interpolated by a polynomial of degree 2

Calculation of $\mathrm{A}(\cos)$ for fixed Q 2 and W is very cheap

Interpolation with degree 2 polynomial means:

Cumulative distribution function $C D F(\cos (\theta))=\int a_{2} \cos ^{2} \theta+a 1 \cos \theta+a_{0} d \cos \theta$
Is a monotonic degree 3 polynomial
\rightarrow Can be inverted analytically
\rightarrow Inversion sampling
A. Nikolakopoulos

How to introduce the fivefold CS ?

given a Q 2 and W , distribution of $\cos \theta^{*}$ is determined by A

$$
\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]
$$

A is a smooth function and can usually be interpolated by a polynomial of degree 2

Calculation of $\mathrm{A}(\cos)$ for fixed Q 2 and W is very cheap

Interpolation with degree 2 polynomial means:

Cumulative distribution function $C D F(\cos (\theta))=\int a_{2} \cos ^{2} \theta+a 1 \cos \theta+a_{0} d \cos \theta$
Is a monotonic degree 3 polynomial
\rightarrow Can be inverted analytically
\rightarrow Inversion sampling
A. Nikolakopoulos

How to introduce the fivefold CS ?

By calculation of A at 3 points one gets a cosine according to the theoretical distribution With efficiency 100%
given a Q2, W, and $\cos \theta^{*}$ distribution of φ^{*} is
$\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]$

Again we determine the CDF algebraically.
\rightarrow The CDF can be inverted numerically to give φ^{*}

How to introduce the fivefold CS ?

First results, sampling in the full phase space,

 still some issues to be checked and algorithms to be explored

A. Nikolakopoulos

$v+A \rightarrow \pi+N+X+l:$ counting variables

6 Four vectors $=6 \times 4=24$ variables

- 4 : on mass shell relations
- 4 : initial nucleus known (at rest)
- 4 : Energy-momentum conservation
- 3 : Freedom to choose reference frame

And invariance along q
(known direction of one four vector)
$=9$ independent variables

- 1 : Final nucleus left in a hole state (i.e. integrate over final nucleus energy)
$=8$ independent variables

$$
\mathrm{E}_{\mathrm{v}}, \cos \theta_{1}, \mathrm{E}_{1}, \Omega_{\pi}, \Omega_{\mathrm{N}}, \mathrm{k}_{\pi}
$$

We go from a $2 \rightarrow 3$ process to a $2 \rightarrow 4$ process
But there are no additional constraints because residual nucleus can be in any state. So from $5 \rightarrow 9$ variables (one can also interpret the extra 4 variables as four-vector of initial bound nucleon)

How to introduce the fivefold CS ?

By calculation of A at 3 points one gets a cosine according to the theoretical distribution With efficiency 100%
given a Q2, W, and $\cos \theta^{*}$ distribution of φ^{*} is
$\frac{d \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{k_{\pi}^{*}}{k_{l}^{2}} \times\left[A+B \cos \left(\phi^{*}\right) C \cos \left(2 \phi^{*}\right)+D \sin \left(\phi^{*}\right)+E \sin \left(2 \phi^{*}\right)\right]$

Again we determine the CDF algebraically.
\rightarrow The CDF can be inverted numerically to give φ^{*}

$v+A \rightarrow \pi+N+X+l:$ Born approximation

final state
Nuclear modeling = finding a good approximation for the wavefunctions

Impulse approximation

I. Interaction with only one particle of complex system
II. The incident particle (Q) is unaffected by the system (in BA)

$$
\Psi_{i, f}=\sum \phi_{N} \otimes \phi_{A-1}
$$

Reduces the problem to finding single particle states in nuclear medium:

$$
J_{S N}^{u}=\int \psi_{N} \phi_{\pi} \mathcal{O}^{u} e^{-i \mathbf{q} \mathbf{r} \mathbf{r}} \phi_{i} d \mathbf{r}
$$

Impulse approximation

I. Interaction with only one particle of complex system
II. The incident particle (Q) is unaffected by the system (in BA)

$$
\Psi_{i, f}=\sum \phi_{N} \otimes \phi_{A-1}
$$

Reduces the problem to finding single particle states in nuclear medium:

$$
\begin{align*}
& J^{\mu}=\int \mathrm{d} \mathbf{p}_{N}^{\prime} \int \frac{\mathrm{d} \mathbf{p}}{(2 \pi)^{3 / 2}} \times \\
& \bar{\psi}_{s_{N}}\left(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}\right) \phi^{*}\left(\mathbf{k}_{\pi}^{\prime}, \mathbf{k}_{\pi}\right) \mathcal{O}_{1 \pi}^{\mu}\left(Q, K_{\pi}^{\prime}, P_{N}^{\prime}\right) \psi_{\kappa}^{m_{j}}(\mathbf{p}), \\
& \quad \text { With } \mathbf{p}=\mathbf{p}_{\mathbf{m}}=\mathbf{q}-\mathbf{p}_{\mathrm{N}}^{\prime}-\mathbf{k}_{\pi}^{\prime} \tag{6}
\end{align*}
$$

This is a six dimensional integral with a lot of matrix multiplication...

Factorization

$$
\begin{aligned}
& J^{\mu}=\int \mathrm{d} \mathbf{p}_{N}^{\prime} \int \frac{\mathrm{d} \mathbf{p}}{(2 \pi)^{3 / 2}} \times \\
& \bar{\psi}_{s_{N}}\left(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}\right) \phi^{*}\left(\mathbf{k}_{\pi}^{\prime}, \mathbf{k}_{\pi}\right) \mathcal{O}_{1 \pi}^{\mu}\left(Q, K_{\pi}^{\prime}, P_{N}^{\prime}\right) \psi_{\kappa}^{m_{j}}(\mathbf{p})
\end{aligned}
$$

Replace these by asymptotic momenta

Relativistic Plane wave Impulse approximation

$$
\begin{align*}
& J^{\mu}=\int \mathrm{d} \mathbf{p}_{N}^{\prime} \int \frac{\mathrm{d} \mathbf{p}}{(2 \pi)^{3 / 2}} \times \\
& \bar{\psi}_{s_{N}}\left(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}\right) \phi^{*}\left(\mathbf{k}_{\pi}^{\prime}, \mathbf{k}_{\pi}\right) \mathcal{O}_{1 \pi}^{\mu}\left(Q, K_{\pi}^{\prime}, P_{N}^{\prime}\right) \psi_{\kappa}^{m_{j}}(\mathbf{p}), \\
& \mathbf{p}_{\mathrm{N}}^{\prime}=\mathbf{p}_{N} \quad \mathbf{k}_{\pi}^{\prime}=\mathbf{k}_{\pi} \tag{6}
\end{align*}
$$

$H^{\mu \nu} \propto \operatorname{Tr}\left(\psi_{b}(\mathbf{p}) \bar{\psi}_{b}(\mathbf{p}) \tilde{\mathcal{O}}^{\mu}\left(\not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)$

Plane wave Impulse approximation

$$
H^{\mu \nu} \propto \operatorname{Tr}\left(\psi_{b}(\mathbf{p}) \bar{\psi}_{b}(\mathbf{p}) \tilde{\mathcal{O}}^{\mu}\left(\not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)
$$

Projection onto positive energy states
$H^{\mu \nu} \propto\left|\psi_{b}(p)\right|^{2} \operatorname{Tr}\left(\left(p+M_{N}^{\prime}\right) \tilde{\mathcal{O}}^{\mu}\left(\not \not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)$
Matrix element becomes proportional to initial momentum distribution

Combination of off-shell plane wave spinor expression And probability of finding momentum p in nucleus

Plane wave Impulse approximation

$$
H^{\mu \nu} \propto \operatorname{Tr}\left(\psi_{b}(\mathbf{p}) \bar{\psi}_{b}(\mathbf{p}) \tilde{\mathcal{O}}^{\mu}\left(\not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)
$$

Projection onto positive energy states
$H^{\mu \nu} \propto\left|\psi_{b}(p)\right|^{2} \operatorname{Tr}\left(\left(p+M_{N}^{\prime}\right) \tilde{\mathcal{O}}^{\mu}\left(\not \not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)$
Matrix element becomes proportional to initial momentum distribution

Combination of off-shell plane wave spinor expression And probability of finding momentum p in nucleus

Plane wave Impulse approximation

Side note:

Difference between RPWIA and PWIA was explored in:

Analysis of factorization in (e, ép) reactions: A survey of the relativistic plane wave impulse approximation
J.A. Caballero ${ }^{1,2}$, T.W. Donnelly ${ }^{3}$, E. Moya de Guerra ${ }^{2}$ and J.M. Udías ${ }^{4}$

Mat dist

> Nucl.Phys. A632 (1998) 323-362

No big difference for inclusive responses in CC2 operator
Con Larger effect for more 'off-shell' operators, and for transverse-longitudinal interference
And probability of finding momentum p in nucleus

Plane wave Impulse approximation

$H^{\mu \nu} \propto \operatorname{Tr}\left(\psi_{b}(\mathbf{p}) \bar{\psi}_{b}(\mathbf{p}) \tilde{\mathcal{O}}^{\mu}\left(\not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)$

Projection onto positive energy states
$H^{\mu \nu} \propto\left|\psi_{b}(p)\right|^{2} \operatorname{Tr}\left(\left(p x+M_{N}^{\prime}\right) \tilde{\mathcal{O}}^{\mu}\left(\not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)$
Matrix element becomes proportional to initial momentum distribution

Combination of off-shell plane wave spinor expression And probability of finding momentum p in nucleus

Plane wave Impulse approximation

$H^{\mu \nu} \propto\left|\psi_{b}(p)\right|^{2} \operatorname{Tr}\left(\left(p+M_{N}^{\prime}\right) \tilde{\mathcal{O}}^{\mu}\left(\not k_{N}+M_{N}\right) \mathcal{O}^{\nu}\right)$ Matrix element becomes proportional to initial momentum distributions (some examples):

- RFG : plane waves up to k_{F}
- LFG : plane waves up to k_{F} but k_{F} depends on nuclear density \rightarrow possible to introduce additional density dependence
- IPSM : e.g. from mean field (HF/RMF/harmonic oscillator) \rightarrow different shells have different momentum distribution and separation energies
- IPSM + correlations : account for high momentum components in nuclear momentum distribution

Plano mave Tmmillen annvonvimation

Nuclear Theory and Event Generators for Charge-Changing Neutrino Reactions

J. W. Van Orden

Department of Physics, Old Dominion University, Norfolk, VA 23529
Jefferson Lab,12000 Jefferson Avenue, Newport News, VA 23606, USA 図
T. W. Donnelly

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
N) \mathcal{O}^{ν})
ty \rightarrow
(Dated: August 5, 2019)
Comparison of these different spectral functions For exclusive nucleon knockout (RFG, LDA, RMF, Rome model)

Factorization, with FSI

Transition matrix:
$\left.\int \mathrm{d} \mathbf{p}_{N}^{\prime} \int \frac{\mathrm{d} \mathbf{p}}{(2 \pi)^{3 / 2}} \right\rvert\, \psi_{\kappa}^{m_{j}}(\mathbf{p}) \bar{\psi}_{s_{N}}\left(\mathbf{p}_{N}^{\prime}, \mathbf{p}_{N}\right) \phi^{*}\left(\mathbf{k}_{\pi}^{\prime}, \mathbf{k}_{\pi}\right)$
In general, dependence on $q, \mathbf{p}_{\mathrm{N}}$ and \mathbf{k}_{π} (7 variables)
Contrast with RPWIA : depends only on $p_{m}=p_{N}+k_{\pi}-q$

Spreading of the energy momentum relation in a potential
Particles have fixed energy and are only on shell asymptotically
\rightarrow Probing of multiple initial momentum states

Kinematic dependence

In general, dependence on $\mathrm{q}, \mathrm{p}_{\mathrm{N}}$ and k_{π} (7 variables) Contrast with RPWIA : depends only on $p_{m}=p_{N}+k_{\pi}-q$

Kinematic dependence

In general, dependence on $\mathrm{q}, \mathrm{p}_{\mathrm{N}}$ and k_{π} (7 variables)
Contrast with RPWIA : depends only on $p_{m}=p_{N}+k_{\pi}-q$

Energy dependent potentials

Dependence on q and k_{N}
Becomes less important for high momenta

Final state interactions

Distinction between:

I. HARD FSI

Secondary interactions
(e.g. Absorption, charge exchange, ...)

Treated in Cascade model
II. SOFT FSI

Influence of nuclear medium on energy-momentum of particle Not included in Cascade

Final state interactions

I. HARD FSI

Secondary interactions
(e.g. Absorption, charge exchange, ...)

Treated in Cascade model
II. SOFT FSI

Influence of nuclear medium on energy-momentum of particle Not included in Cascade

In principle: coupled channels

In practice : Optical potentials

Imaginary part removes
inelasticities from the final state

Inclusive \leftrightarrow Exclusive

Don't look at the final state All inelastic channels contribute

Look at one channel
Flux is lost in inelasticities

Final state interactions

Inclusive \leftrightarrow Exclusive

Don't look at the final state
All inelastic channels contribute

Look at one channel
Flux is lost in inelasticities

Potentials are energy dependent because Inelasticity grows as more channels open
RGF (A. Meucci, C. Giusti, et al.) : recover flux lost in inelastic channels

RROP: Use real part of optical potential to conserve flux
ED-RMF: Phenomenological reduction of real RMF potential

Distortion of the outgoing nucleon

NuSTEC workshop, Pittsburgh USA
A. Nikolakopoulos

Distortion of the outgoing nucleon

NuSTEC workshop, Pittsburgh USA
A. Nikolakopoulos

Distortion of the outgoing nucleon

Carbon

Arxiv:1909.07497

NuSTEC workshop, Pittsburgh USA
A. Nikolakopoulos

$\left(e, e^{\prime} p\right)$ and Final-State Interactions

$\left(e, e^{\prime} p\right)$ and Final-State Interactions

Observation/Assumption:

The effect of the optical potential accounts almost only for 'hard' rescattering events.

So the MC can take care of this but the model should take into account the real part of the potential to give A good inclusive cross section

$$
\omega(\mathrm{MeV})
$$

Random Phase Approximation

$$
\Pi^{(R P A)}\left(x_{1}, x_{2} ; \omega\right)=\Pi^{(0)}\left(x_{1}, x_{2} ; \omega\right)+\frac{1}{\hbar} \int d x \int d x^{\prime} \Pi^{(0)}\left(x_{1}, x ; \omega\right) \tilde{V}\left(x, x^{\prime}\right) \Pi^{(R P A)}\left(x^{\prime}, x\right.
$$

Mean field propagator

Random Phase Approximation

Random Phase Approximation

Largest reduction for low w and q
\rightarrow in QE scattering this corresponds to low Nucleon momenta
\rightarrow This is the region where FSI is most important

Orthogonality

Spreading of wavefunction

Start from (basically) free initial and final states arge effect of RPA is needed to introduce interactions
$\mathrm{E}_{\mathrm{v}}=200 \mathrm{MeV} ; \theta=30^{\circ} \quad \mathrm{E}_{\mathrm{v}}=500 \mathrm{MeV} ; \theta=15^{\circ} \quad \mathrm{E}_{\mathrm{v}}=500 \mathrm{MeV} ; \theta=60^{\circ} \quad \mathrm{E}_{\mathrm{v}}=750 \mathrm{MeV} ; \theta=30^{\circ}$

$\omega(\mathrm{MeV})$
A. Nikolakopoulos

Nucleon FSI and Q^{2} distributions

Reduction at low Q^{2} Compared to RPWIA

Pion potential is still Missing, one expects A reduction in the same kinematic region
A. Nikolakopoulos

Nucleon FSI and Q^{2} distributions

Does a deficit also show up in other distributions?

Nucleon FSI leads to an overall reduction in pion angle Slightly stronger forward reduction

Nucleon FSI and Q^{2} distributions

Does a deficit also show up in other distributions?

In lepton angle mostly
Forward lepton
reduction
A. Nikolakopoulos

Conclusions

I. Nucleon complexity
\rightarrow Angular distributions require higher dimensional sampling
II. Nuclear complexity
\rightarrow Nuclear degrees of freedom require higher
dimensional sampling
III. Final state interaction
\rightarrow Consistently describing inclusive and exclusive signals is complicated
\rightarrow Nuclear effects depend on kinematics of outgoing hadrons
\rightarrow higher dimensional problems

