Impact of RES modeling to the GeV global neutrino oscillation program (*i.e. NOvA* and DUNE)

NuSTEC – Pittsburgh 2019

Gregory Pawloski University of Minnesota

Chatty Cabby

What is *NOvA* (currently running)

Long baseline neutrino experiment

 $E \approx 2 \text{ GeV}$ (off-axis narrow band beam) L = 810 km

Oscillations governed by Δm^2_{32} (Δm^2_{31})

NuMI beam produced at Fermilab

- ν_{μ} and $\overline{\nu}_{\mu}$ beam modes
- $(\overline{\nu}_{\mu}^{}) \rightarrow (\overline{\nu}_{x}^{})$ oscillations

Two detector experiment

Near detector (Fermilab, IL) Measure beam before oscillation Far Detector (Ash River, MN)

Measure oscillated beam

NOvA – Detector Experiment

Giant hydrocarbon nuclear target with 16% Cl

NOvA – Event Topologies

X₀ = 38 cm (6 planes longitudally, 10 cells transversely

What is *DUNE*

Long baseline neutrino experiment

- $E \approx sub-GeV$ to above 4 GeV
 - (on-axis wide band beam)
- L = 1300 km

Oscillations governed by Δm^2_{32} (Δm^2_{31})

LBNF beam to be produced at Fermilab

 ν_{μ} and $\overline{\nu}_{\mu}$ beam modes

 $(\overline{\nu}_{\mu}^{}) \rightarrow (\overline{\nu}_{x}^{})$ oscillations

Two detector experiment

Near detectors (Fermilab, IL) Measure beam before oscillation

Far Detectors (SURF, SD) Measure oscillated beam

(in development)

DUNE – Far Detectors

Giant argon nuclear target

Four LArTPC detectors

Cryostats: 14 m x 14 m x 62 m, each Fiducial mass: 10 kton, each Single Phase: 3.5m drift length over 2.2 ms Dual Phase: 12m drift length over 7.5ms

DUNE – Event Topologies

DUNE – Near Detectors

Conceptual Design Stage

Three detectors:

ArgonCube: LArTPC

MPD: Magnetized HPgTPC surrounded by EM calorimeter

3DST-S: Magnetized 3D scintillator tracker surrounded by TPC and EM calorimeter

Oscillation Measurements

Both experiments measure $\delta_{CP},\,\theta_{23}$, mass splitting (hierarchy /ordering)

The key measurements for oscillation results – Neutrino energy – Event yields

What processes are relevant

Rev. Mod. Phys. 84, 1307 (2012)

Both experiments are at an energy where resonant production is dominant However the mix of QE, 2p2h, RES, and DIS is important and muddles things

Oscillation Measurements

Both experiments measure $\delta_{CP},\,\theta_{23}$, mass splitting (hierarchy /ordering)

The key measurements for oscillation results – Neutrino energy – Event yields

Events Yields

Flux is different (eg oscillation)

Neutrino Energy

Neutrino Energy

Different processes have different energy resolutions and energy scales

How much 4-momentum goes to the lepton, how much goes to the hadronic system

How much 4-momentum is invisible

NOvA – Event Topologies

 $E_{\nu} = E_{\mu} + E_{Everything \; Else}$

Calorimetric sum of non-muon hits Modelling dependent

DUNE has similar approach for TDR analysis

 $E_{\nu} = E_{\mu} + E_{Everything \, Else}$

NOvA Simulation Neutrino Beam Mean -1.6 % RPA^{RES} (+1 σ) RMS 8.9 % RPA^{RES} (-1 σ) Mean -1.6 % RMS 8.9 % Mean -1.8 % M_{Λ}^{CCRES} (+1 σ) RMS 9.0 % M_{Λ}^{CCRES} (-1 σ) Mean -1.4 % RMS 8.8 % Mean -1.7 % M_{v}^{CCRES} (+1 σ) RMS 9.0 % M_{v}^{CCRES} (-1 σ) Mean -1.5 % RMS 8.9 % Mean -1.6 % $M_{\Lambda}^{\text{NCRES}}$ (+1 σ) RMS 8.9 % M_{A}^{NCRES} (-1 σ) RMS 8.9 % -0.4 0.2 -0.20 0.4 (True-Reco)/True

These differences in energy scale & resolution would represent our uncertainty if we had complete uncertainty on the relative contribution from each process

Fortunately, we know the relative contribution from each process fairly well

As determined by our model uncertainties

 $E_{\nu} = E_{\mu} + E_{Everything \, Else}$

Note that you can reduce model dependence by using more information i.e. Measure individual particles in the hadronic activity (muddled by FSI and neutrons)

NOvA – Event Topologies

X₀ = 38 cm (6 planes longitudally, 10 cells transversely

DUNE – Event Topologies

ND energy resolutions

$$E'_{rec} = E_{rec} \times (p_0 + p_1 \sqrt{E_{rec}} + \frac{p_2}{\sqrt{E_{rec}}})$$

Particle	p_0	p_1	p_2
all (except muons)	2%	1%	2%
μ (range)	2%	2%	2%
μ (curvature)	1%	1%	1%
p, π^\pm	5%	5%	5%
e, γ , π^0	2.5%	2.5%	2.5%
n	20%	30%	30%

Some fries inside...

Impact of systematics

NOvA and DUNE both use GENIE as the default MC generator

Current public studies based on v2.12

NOvA Systematics – v_e Apperance

Stats approaching systematics for signal

NOvA currently statistics limited *DUNE will have more stats!*

Dominant systematics related to cross sections and calorimetric response

Gregory Pawloski - University of Minnesota

NOvA Systematics – v_e Apperance

Breakdown of cross-section systematics

Dominant cross-section systematic from <u>RES uncertainties</u> (GENIE knobs + low Q² suppression) Even bigger than 2p2h uncertainties

ND constraints (through extrapolation) reduce uncertainties

Low Q² suppression & MaCCRES uncertainties largest effect on signal

NOvA Systematics – ν_{μ} Spectrum

Large source of cross-section uncertainty for NOvA

Analysis also includes uncertainties for:

Low Q² suppression via Minerva data (arXiv:1903.01558) Reweighing Rein-Sehgal for interference between RES and non-RES pion production, etc (Phys. Rev. D97 (2018) 013002)

-0.8 - 0.6 - 0.4 - 0.2 0 0.2 0.4 0.6 0.8

Suppression of resonant events

The MINOS experiment previously measured less resonant events at lower Q² than predicted

DOI:10.1103/PhysRevD.91.012005

Suppression of resonant events

Minerva also measures less pion events at lower Q² than predicted

arXiv:1903.01558

NOvA – RES Suppression

NOvA also observes less resonant events at lower Q² than predicted

NOvA – RES Suppression

NOvA Preliminary NOvA Preliminary Quantile 3 Neutrino Beam Quantile 3 Antineutrino Beam 2.5 0.9 v_{μ} + \overline{v}_{μ} CC Selection $v_{\mu} + \overline{v}_{\mu}$ CC Selection No RES RPA No RES RPA 0.8 + ND Data -+- ND Data NOvA also observes less QE 0.7 QE RES 10⁴ Events RES 0⁴ Events 1.5 DIS DIS resonant events at lower 0.5 Other Other 0.4 Q² than predicted 0.3 0.2 0.5 0.1 0<u>`</u> 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.8 0.9 Reco Q² (GeV²) Reco Q² (GeV²) **NOvA Preliminary NOvA Preliminary** Neutrino Beam Quantile 3 Antineutrino Beam Quantile 3 2.5 Applying Q² dependent v_{μ} + \overline{v}_{μ} CC Selection $v_{\mu} + \overline{v}_{\mu}$ CC Selection 0.8 - ND Data -+ ND Data suppression from 0.7 QE QE RES RES Events 10⁴ Events 0.6 1.5 Valencia QE RPA model DIS DIS Other Other 04 Take correction as new CV 0.3 0.2 0.5 with 100% uncertainty 0 0 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Reco Q² (GeV²) Reco Q² (GeV²)

NOvA – RES Suppression

NOvA Preliminary NOvA Preliminary Quantile 3 Neutrino Beam Quantile 3 Antineutrino Beam 2.5 0.9 v_{μ} + \overline{v}_{μ} CC Selection $v_{\mu} + \overline{v}_{\mu}$ CC Selection No RES RPA No RES RPA 0.8 -+- ND Data -+- ND Data QE 0.7 QE RES RES 10⁴ Events 0⁴ Events 1.5 DIS DIS 0.5 Other Other 0.4 0.3 0.2 0.5 0.1 **NOvA** is studying 0ò 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Reco Q² (GeV²) effect of Reco Q² (GeV²) **MINOS** (iron) and **NOvA Preliminary NOvA Preliminary** Minerva (hydrocarbon) Quantile 3 Neutrino Beam Antineutrino Beam Quantile 3 2.5 0.9 empirical weights v_{μ} + \overline{v}_{μ} CC Selection $v_{\mu} + \overline{v}_{\mu}$ CC Selection 0.8 - ND Data -+ ND Data 0.7 QE QE RES Events RES 10⁴ Events 0.6 1.5 DIS DIS Other Other 04 0.3 0.2 0.5 0 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Reco Q² (GeV²) Reco Q² (GeV²)

RES Q² Shape

GENIE 3 Berger-Seghal Models vs GENIE historical configuration

Resonance modelling is a large cross-section uncertainty Effect is important for predicting event yields Conservative uncertainties currently do not limit the oscillation analyses

Empirical modeling of low Q2 suppression How do we use MINOS vs Minerva? How do we go from NUEGEN, GENIE 2 to GENIE 3? What is an acceptable systematic for this effect? Systematic knobs have assume some correlated effects

Extrapolation

- 1) Select events in ND (use data)
- 2) Map ND reco E to true E (use simulation)
- 3) Apply ratio of FD events to ND events in bins of true E (use simulation) Takes into account differences between two detectors
- 4) Apply oscillation probability on FD true E events (use simulation)
- 5) Map FD true E to reco E (use simulation)
- 6) Oscillated FD prediction

Don't need to separately measure flux, cross-section, efficiencies, etc in ND

Systematics accounted for by altering simulation at steps 2, 3, 4, and 5