

Thank you: Steve Dytman, Julia Tena Vidal, Igor Kakorin and Marco Roda

Hi Adi Ashkenazi

Resonances in GENIE

GENIE has incorporated **Rein-Sehgal (RS)**

- 18 resonances
- Axial and Vector Form Factors are dipole form.
- Resonances W < 1.7 GeV, DIS W > 1.7 GeV
- Non resonant background Bodek Yang of l = 1/2 added incoherently
- Corrected Δ to N γ and non isotropic decay

Resonances in GENIE

GENIE has incorporated Rein-Sehgal (RS)

- 18 resonances
- Axial and Vector Form Factors are dipole form.
- Resonances W < 1.7 GeV, DIS W > 1.7 GeV
- Non resonant background Bodek Yang of l = 1/2 added incoherently
- Corrected Δ to N γ and non isotropic decay

and moved to **Berger-Sehgal (BS)** see <u>K.S. Kuzmin talk</u> from yesterday

All of the above +

- Non zero m_{μ}
- Final state muon can have both helicities
- Improved Form Factors
 - Normalisation factors inherited from NEUGEN not updated
 - Tuning obtained with 2016 PDG parameters
 - Does not take into account interference terms

Resonances in GENIE RS vs BS

SIS - Shallow Inelastic Scattering in GENIE

The non resonant background proportional to Bodek-Yang DIS Implemented in the same manner for BS and RS

$$\frac{d^{2}\sigma^{DIS}}{dQ^{2}dW} = \frac{d^{2}\tilde{\sigma}^{DIS}}{dQ^{2}dW} \cdot \Theta(W - W_{cut}) + \frac{d^{2}\tilde{\sigma}^{DIS}}{dQ^{2}dW} \cdot \Theta(W_{cut} - W) \cdot \sum_{m} f_{m}$$
Non-Resonant Background: Scaled DIS

 f_m multiplicity functions = $r_m \ge P_m^{had}$

 r_m is a tuneable ad hoc parameter depending on:

- neutrino flavour
- multiplicity of final state
- initial state nucleon

 P_m^{had} is the probability of the final state m obtained from hadronization model

Resonances in GENIE - Electron Inclusive G18_02a BS

Resonances in GENIE - Neutrino Inclusive G00 00a

* Default tune was driven by MINOS data

Resonances in GENIE - Neutrino Exclusive

G00_01a

Over predicting one pion production under predicting two pions

GENIE tune - SIS Region

To address tensions between inclusive and exclusive data preform tune:

Using Inclusive, 1π and 2π CS from deuterium targets at: ANL_12FT* BNL_7FT* FNAL BEBC

Tuning 8 parameters in the SIS region: M_A^{res} RES-XSecScale W_{cut} R_m DIS-XSecScale

GENIE tune - SIS Region

G18_02a default (black) and tuned (red) vs ν_{μ} CC inclusive. Just BEBC, BNL_7FT and FNAL data was used for the tune. For these datasets, $\chi^2_{default} = 18.8/26$ DoF, $\chi^2_{tuned} = 15.5/26$ DoF.

GENIE tune - SIS Region

G18_02a default, χ²= 67.6 / 29 DoF G18_02a tuned, χ²= 40.5/ 29 DoF

• ANL_12FT [Campbell et al., Phys.Rev.Lett.30:335(1973)]

ANL_12FT [Radecky et al., Phys.Rev.D25:1161 (1982)]

ANL_12FT [Wilkinson et al., Phys.Rev.D90:112017 (2014)]
BNL_7FT [Wilkinson et al., Phys.Rev.D90:112017 (2014)]

Julia Tena Vidal

G18_02a default (black) and tuned (red) vs ν_{μ} CC $1\pi^+$ production data on proton. Just the ReAnalized data has been used. For these detasets, $\chi^2_{default} = 30.3/15$ DoF and $\chi^2_{default} = 16.85/15$ DoF.

- G18_02a default, χ^2 =19.3 / 15 DoF
 - ____ G18_02a tuned, χ²=15.2 / 15 DoF
- ANL_12FT [Day et al., Phys.Rev.D28:2714 (1983)]
- BNL_7FT [Kitagaki et al., Phys.Rev.D34:2554 (1986)]

G18_02a default (black) and tuned (red) vs ν_{μ} CC two pion production data sets. Both datasets are included in the tune.

Delta

Delta decay in GENIE is nonisotropic for theta only

The GENIE model is compared to fits to ANL and BNL data done by NuWro

Delta

GENIE model has Δ to N γ corrected

Pauli Blocking

Pauli blocking effect on cross section < 5 % at low Q₂

DCC implementation

First validation tests - reproducing DCC prediction towards its implementation in GENIE

Steve Dytman

DCC

Steve Dytman

Still in progress π^+ p total xs shows that DCC is missing 1π -exchange at high W

From Toru Sato talk yesterday

Summary

GENIE Resonance model BS and SIS region based on scaled Bodek-Yang

New tune to inclusive and exclusive $(1\pi, 2\pi)$ data is available.

GENIE validation is Δ dominated, with corrected $\Delta N\gamma$ and directionality. GENIE has no :

- Delta FSI now
- Medium corrections to Delta formation.

Though both are standard in electron scattering theory.

Lack of neutrino data above Delta:

A call for Minerva to supply new data

A call for theorists to supply equivalent predictions for electrons.

Future Plans

GENIE is person power limited.

Wishlist includes :

- DCC FSI implementation S. Dytman
- MK model I. Kakorin, M. Kabirnezhad
- MAID vector form factors, possibly retune of axial form factors
- Coupling of Naomi Rocco model with DCC FSI

STAY TUNED