

LArPix Design Details

Dan Dwyer (LBNL) May 16, 2019

Introduction

Important that LArPix-v2 satisfies requirements for:

- Assembly, testing, and operation of the ArgonCube 2x2 Demonstrator
- Input for the DUNE Near Detector Technical Design Report

This talk:

- Examine expected signal characteristics
- Describe LArPix-v2 analog and digital requirements
- Discuss modifications that facilitate assembly and operation

LArTPC Signals

Primary signals of interest for ArgonCube 2x2 Demonstrator:

Operation on surface at Bern: Operation underground at FNAL: - Mostly MIP cosmic rays: - Mostly neutrino interactions (mix of MIP tracks and small showers) **MicroBooNE** After noise removal - Signals occur in bursts at ~1Hz 4200 E¹× 3600 3000 Time [us] 0.5 1800 1200 -0.5JINST 12 (2017) P08003 600 V wire No. - Occasional intense cosmic shower -1.5<u>-</u>0 2.5 z [m] 0.5 1.5 2 (e.g. ArgonTube) Drift distance [cm] Example: 103 E One simulated DUNE beam spill @ 2MW Drift time [µs] May 16, 2018 LArPix Design Details

LArTPC Spatial Resolution

Many aspects of design driven by desired LArTPC 3D spatial resolution:

- Resolutions of 3mm to 5mm in 3D are the regime of interest for DUNE signals.
- Above 5mm, clear degradation of physics performance for signals of interest
- Below 3mm, performance gain unclear. Electron diffusion during drift (~1 mm/Vm) will eventually limit gains.

Anode spatial resolution:

- Determined by pixel spacing.
- LArPix-v1 pixel system: 3mm pixel spacing
- ArgonCube 2x2 Demonstrator: Targeting 4mm spacing.
 - \rightarrow Determines channel density (~62k channels/ m²)

Anode time resolution:

- Time resolution of anode readout determines spatial resolution along direction of drift.
- Drift velocity varies with drift field, reference: 1.6 mm/µs at 500 V/cm
- 3mm-5mm resolution corresponds to
 2-3 us 'binning' of incoming charge.

 \rightarrow Determines channel bandwidth, timing

Anode wire plane

LArTPC Signals

arXiv:1107.5112

Ionization electrons: 23.6 eV per e-→ ~42,000 e- / MeV Recombination loss: @500V/cm MIP: ~30% Proton: ~70% Drift velocity: @500V/cm ~1.6 mm/µs **Drift loss:** Few-% to ~50%, depending on LAr purity and drift distance. Charge signals: (approx.) MIP: ~20k e-Multi-proton: ~250k e-(assuming 4mm pitch)

Minimum-Ionizing Signals

Rough calculation of expected MIP signal:

Model MIP track segments as ~5000 e-/mm, uniformly distributed in space

Simulated track segments in field of view of one 4mm pixel

Length of signal in the drift direction, assuming drift of 1.6 mm/ μ s.

Minimum-Ionizing Signals

Rough calculation of expected MIP signal:

Model MIP track segments as ~5000 e-/mm, uniformly distributed in space

Signal current vs. time

Most MIP signals have short duration (<1 us) and total charge of ~20 ke-. Few MIP signals have long duration (>5 us), with current of ~8000 e- / μ s.

Pixel Signal Modeling

Implemented 3-D field and charge drift for pixel signal modeling.

Electron Paths:

Start in middle of 2-cm box, along z=1cm 'slice', from x=0.7cm to 1.3cm

Propagate in e-field until electron strikes surface.

Configuration:

Drift Field: 500 V/cm Focus grid potential: -200 V Pixel pitch: 3mm

Observations:

- 200V focusing sufficient
- Signal time scale: ~1 μ s
- ~0.3 μ s variation in e- arrival
- ~3% signal induced on neighbor

D. Douglas now working on more refined model

Dynamic Range

Dynamic range of charge signals (in ~2 us intervals):

Low end:

Fraction of a MIP in one pixel: ~0.1-0.25 MIP \rightarrow 2000 e- to 5000 e-

High end: (Not well understood)

DUNE:

Resolve ~5 protons stopping in one 'voxel' near neutrino vertex: ~250 ke-Resolve MIP track ~parallel to wire

My rough estimate:

- Examine ProtoDUNE wire signal peak amplitudes (at 2 us shaping)
- Taken from 1 GeV particle beam run (mostly cosmics, with some beam signals)
- MIP peak: ~25, Max signals: ~500
- \rightarrow Suggests required dynamic range of ~20 MIPs.

Caveat:

I'm not an expert in ProtoDUNE data, so might be overlooking some important aspects of this data (e.g. wire pileup). Further study required.

Charge Uncertainty

Charge Uncertainty:

Any effect that distorts measurement of signal charge: noise, bias, etc. DUNE: 500 e- ENC sufficient. Lower is better.

My rough estimate:

- Readout uncertainty should be smaller than natural stochastic fluctuations in particle energy loss per 'voxel'.
- → Suggests < 5% uncertainty in measured charge
 - < 1000 e- ENC for MIP-level signals < ~20k e- ENC for 20-MIP-level signals

Example Landau distribution for 200 MeV muon energy loss in liquid argon, as simulated using GEANT4 (K. Ingles, Muon Energy Loss in Liquid Argon, 2017)

Question: Is a linear 12-bit ADC necessary?

Heat generation in liquid argon must be controlled:

- Should be less than total heat flux through cryostat: $\sim 10 \text{ W/m}^2$
- Local heating can boil LAr, impacting TPC performance. Limits on local heating poorly quantified.

Lessons from LArPix-v1:

- Minor boiling observed during initial operation
- Measured power consumption: ~62 μ W/channel
- Slight increase in pressure (~6 cm of LAr) sufficient to suppress boiling.

Spurious signals from boiling seen with LArPix-v1 ASIC

Table 3. Average power consumption per channel for a 128-channel readout system at a clock operating frequency of 5 MHz. Values are given for two configurations: an initial default configuration of the supply voltages, and a configuration tuned for low-power operation.

Configuration	Source	Voltage	Current	Average Power
		(V)	(mA)	(µW/channel)
Default	VDDA	1.5	2.0	24
	VDDD	1.8	3.6	51
	VDDIO	3.3	8.5	219
				Total: 294
Low-power	VDDA	1.5	2.0	24
	VDDD	1.1	2.1	18
	VDDIO	2.0	1.3	20
				Total: 62

Cryogenic Operation

ASIC must stably operate in liquid argon (~87 K):

- Have operated ~60 LArPix-v1 ASICs in LAr. No cryogenic failures identified.
- ~25 v1 ASICs survived >3 thermal cycles with no noticeable change in performance.
- Successfully operated 16 v1 ASICs for continuously for ~1 week in LAr with no noticeable change in performance.

Requirements for LArPix-v2 in ArgonCube 2x2 Demonstrator:

- As a technical demonstrator, could likely suffer up to 5% ASIC loss during the planned
 ~6 months of ArgonCube 2x2 Demonstrator operation and still satisfy TDR needs.
- Loss here is defined as ASIC performance out of target specs.

LArPix Design

True 3D readout: A dedicated front-end channel for every pixel

Approach: Amplifier with Self-triggered Digitization and Readout

Achieve low power: avoid digitization and readout of mostly quiescent data. May 16, 2018 LArPix Design Details

LArPix: Design Details

Specification	Value	Units	Note
Number of Analog Inputs	32 (single- 64	(v2)	
(channels)	ended)		
Noise	300 @ 88K	ENC, e-	Stipulated charge deposition is 15 ke- per MIP for a
	500 @ 300K		track in LAr
Channel gain	4 or 45	μV/e-	Digitally programmable
Time resolution	2	μs	with 10 MHz master clock rate
Analog Dynamic Range	~1300	mV	max signal ~ 250 ke-, minimum detectable signal ~
			600 e-
ADC resolution	6 8 (v2)	bits	programmable LSB, 4 mV nominal (1 ke-)
Threshold Range	0 - 1.8	V	
Threshold Resolution	< 1	mV	nominal
Channel Linearity	1	%	
Operating Temperature Range	88 - 300	°К	
Event Memory Depth	2048	memory	~8 ms without data loss in case of track normal to
		locations	pixel plane
Output Signaling Level	3.3	V	Tunable
Digital data rate	5	Mb/s	With 10 MHz master clock
Event readout time	5	μs	

LArPix Triggering

Self-triggering with pulsed reset \neq Zero suppression

LArPix has no resistive feedback or shaping

ightarrow Charge stays on pixel until you do something with it

Your choices:

- Self-trigger reset: digitize and drain charge after threshold crossed
- External-trigger reset: digitize and drain sub-threshold charge based on external signal
- Cross-trigger reset: digitize and drain sub-threshold charge based on self-trigger of another pixel
- Periodic-trigger reset: periodically discard sub-threshold charge without digitization

LArPix Channel Response

Detailed simulation of LArPix-v1 channel response

LArPix Design Details

'Typical' Timing

- Input collection current / track duration
 - 0-320us (600ns median)
- CSA preamp delay & settling time
 - 15ns & 80ns
- CSA preamp delay & (8-bit) settling time
 - T_{dly}=300ns; T_{stl}=1.8us
 - Settling time forces sampling delay ~2us
 - Min resampling time ~15.5us @T_{clk}=100ns
- Comparator delays
 - Prop. delay (signal dependent)
 - Clock capture delay ≤1T_{clk}
- ADC conversion time
 - 14T_{clk}
 - (4+2)T_{clk} recovery

Deadtime

Channel blind from signal hold to CSA reset

CSA reset introduces 'deadtime'

- More accurately: signal charge loss during reset.

1) Direct reset loss:

Charge arriving between signal hold by ADC and recovery of CSA from reset is never seen by ADC.

2) Indirect reset loss:

Charge arriving shortly before signal hold by ADC, but insufficiently settled on ADC capacitors, is incompletely seen by ADC.

- Unlikely an issue for short MIP signals
- More concern for long signals

Requirements for LArPix-v2:

- Difficult to quantify with existing data. More simulations in progress.

Plan:

- 1) Reduce effect by decreasing time from signal hold to recovery from reset, and speed up buffer.
- 2) Add reset-suppressed (charge-integrating) modes to enable measurement of reset charge loss.
 fixed: ADC digitizes (dt=~2us) n-times before reset dynamic: ADC digitizes (dt=~2us) until ADC value settles
 May 16, 2018 LArPix Design Details

Multiple resets during long signal from track nearly normal to pixel (2°).

Leakage Current

Leakage of charge onto front-end must be mitigated

Large leakage can lead to spurious triggers or increased uncertainty for charge measurement.

LArPix-v1 ASIC:

Observed leakage, no pixel attached At room temp: ~80 fA (~500 e-/ms) At LN/LAr temp: ~80 aA (~500 e-/s)

v1 Conclusion:

Enabling periodic resets at >50 Hz, leakage is negligible at LAr temp. (slightly annoying at room temp)

Also:

Occasional channels with high leakage after pixel PCB assembly. Usually resolved by cleaning pixel PCB.

Example:

Channel with high leakage and 1 Hz periodic reset.

v2 Goal:

Don't substantially increase leakage from v1: ~80 aA in LAr.

Trigger Rate

LArPix concept relies on low trigger rate per pixel

Data rates:

- Data I/O for pixel tile saturates at ~10 kHz trigger rate per I/O link (MOSI/MISO pair).
- Assuming one I/O link per tile, 100 ASICs per pixel tile, 64 channels per ASIC:

→ Physical Limit: ~1.5 Hz / channel

- Expected data rates from true signals:

Observed: LArPix-v1 @ Bern (on surface, 60cm-drift): ~0.3 Hz / channel

Expected: ArgonCube 2x2 Demonstrator:

@ Bern (on surface, 30cm-drift): ~0.15 Hz / channel

@ FNAL (underground, 30cm-drift): ~0.01 Hz / channel

Channel thresholds:

LArPix-v1:

Observed excess trigger rate (~1 Hz) at threshold of ~0.4 MIP. Insufficiently clean power?

Worse at Bern due to enhanced noise environment (lab above train station).

LArPix-v2:

Improving cleanliness of analog power with on-chip LDOs. Improve ground plane on v2 pixel tile.

Power:

Data I/O a large part of digital power consumption. Hard to increase I/O link bandwidth at fixed power. Some room to decrease digital voltage to reduce I/O power.

May 16, 2018

FIFO Depth

LArPix FIFO facilitates slow low-power off-chip data transmission

How large of a FIFO is required?

Lesson from LArPix-v1 @ Bern:

- FIFO depth: 2048 entries
- 32 channels per chip
- 16 chip daisy chain
- Average data rate, on surface, 60cm-drift: ~0.3 Hz / channel

Observed:

FIFO half-full flags: 3 events over ~1 week of operation FIFO full flags: 0

Estimate for LArPix-v2 in ArgonCube 2x2 Demonstrator:

- 64 channels per chip $\rightarrow x2$ FIFO depth
- Shorter drift length (~35cm instead of 60cm.) $\rightarrow x0.5$ FIFO depth
- Hydra I/O vs. Daisy Chain: \rightarrow Signal-dependent. Simulation in progress.

Rough Estimate:

Likely ok underground @ FNAL. Unclear about surface operation @ Bern.

v2: Implementing tunable I/O clock rate to allow trade-off in data rate vs. power

FIFO Depth

LArPix FIFO facilitates slow low-power off-chip data transmission

→ What about intense, long signal bursts on one channel, chip, pixel tile?

Scenario 1: Single channel fully active for one drift window drift_velocity: 1.6 mm/us drift_distance: 350 mm (for ArgonCube 2x2 Demonstrator) drift_window = drift_distance / drift_velocity $\rightarrow \sim 220 \text{ us}$ sample_time: 2.0 us n_samples_per_channel = drift_window / sample_time $\rightarrow \sim 110 \text{ samples}$ Scenario 2: All channels on chip maxed out during one drift window n_channels: 64 per chip

n_samples_per_chip = n_samples_per_channel * n_channels \rightarrow 7,000 samples

Neither scenario is very likely for MIP tracks.

More likely: MIP track is perpendicular to one chip region:

 \rightarrow ~110 samples spread over a few (~8) of the channels on the chip.

Example intense cosmic shower from 5m ArgonTube LArTPC

Open question: Particle showers

- Simulation in progress
- v1 operation at Bern: No 'FIFO full' flags from cosmic showers.

Assembly and Operation

Many changes needed for assembly and operation of detector-scale system

Assembly:

- \rightarrow Enable complete assembly of pixel tiles by commercial vendors
 - Increase channel count: from 32 (v1) to 64 (v2)
 - Increase default pixel spacing: from 3mm (v1) to 4mm (v2)
 - Substantially reduce the number of SMT components: ~30/ASIC (v1) to ~few/ASIC (v2)
 - Simplify chip attachment, rework: wirebond COB (v1) to QFP package (v2)
 - Simplify PCB structure: two PCB sandwich (v1) to single PCB (v2)

Operation:

 \rightarrow Pixel tile must continue to function, robust to arbitrary single-ASIC failures.

Example ASIC failure modes considered:

Chip D.O.A., excess current draw on power-up, excess noise generation on power-up, data I/O failure **Key v2 features:**

- Hydra I/O

- ASIC subsection power disabled by default, manually enabled via digital control
- Extensive in-chip monitoring capabilities
- Enhanced test-pulse capabilities
- Protection against disabled pixel charge-up

Summary

Requirements for the LArPix-v2 ASIC design

Signal targets for the ArgonCube 2x2 Demonstrator:

- Cosmic Ray tracks and showers, operating on the surface in Bern
- NuMI neutrino beam interactions, operating underground at Fermilab

LArPix-v1 to v2 changes:

Primarily focused on aiding large-scale detector assembly and operation

- Robust I/O architecture
- Chip configurability to mitigate failure modes
- Increase channel count, use QFP packaging, minimize external circuitry and components

Maintain v1 physics performance, with some limited enhancements

- Reduce front-end deadtime, charge signal loss
- Enhance front-end test pulse system to improve channel characterization
- Larger timestamp to facilitate data synchronization