
>>> DAPHNE initial design considerations for the FEB
>>> High Performance data acquisition for ARAPUCAS in Dune
experiment

Name: Manuel Arroyave and Javier Castaño
Date: May 29, 2019

[~]$ _ [1/17]



>>> Content

1. Requirements

2. Mu2e FEB - Context

3. Alternative Design

4. LiteX, Migen, Yosys...

[~]$ _ [2/17]



>>> What we need to solve?

1. 40 Channel FEB
2. 80 MSPS (12ns/event)
3. Big data output in ADC's stage

* 51Gb/s (or 6.4 GB/s) for 16 bit
* 44.8Gb (or 5.6 GB/s) for 14 bit

4. Fast data digitization and multiplexing
5. Ethernet Gigabit ports 1Gb/s (or 125/MB/s)
6. Fast Time prototype.

* Using the highest capacity of 1 ETH Gb port we are able
to stream ≈ 1/50th piece of total data produced by Max
rate SPS ADC's.

[1. Requirements]$ _ [3/17]



>>> Mu2e FEB

1

1Rubinov, 2015

[2. Mu2e FEB - Context]$ _ [4/17]



>>> Mu2e FEB

2
2Rubinov, 2015

[2. Mu2e FEB - Context]$ _ [5/17]



>>> Traditional SoC Architecture

1. 4 Spartan-6 (25KLUT's)
2. 2GB Ram
3. ZYNQ SoC privative CPU
4. Cortex-A9 (≈ 650MHz/s ×2).
5. VHDL specific modules.
6. Make use of specific privative buses
7. Just one Ethernet Gigabit port
8. + Self made Cores for ADC's and MUX

* Integrating self created cores propitiate abnormal
behaviour of the system, bugs in the bus interface and
malfunction of the dedicated core.

* Slow development. Lack of formal verification. Low
Performance.

[2. Mu2e FEB - Context]$ _ [6/17]



>>> Traditional SoC Architecture = Multiple Problems

1. No Framework for FPGA debugging Code
2. Code doesn't support different FPGA suppliers
3. Self topbench debugger that only works (partially) for a

single FPGA board.
4. Very hard to get High Performance (it serialises).
5. Always dependent of privative IPCores. (RAM, Ethernet,

Cordic, MUX...)
6. You can not get rid of the bad use of LUT's. (Vivado

keeps high density buses even when it does not use it at
all)

* 5 Years ago it was the ONLY way.
* ¿Is there any other way?

[2. Mu2e FEB - Context]$ _ [7/17]



>>> Bottleneck

25MB/s ∼ 200b/s ∼ 1/5ETHBW

200b/42Gb = 4 · 10−6%

[2. Mu2e FEB - Context]$ _ [8/17]



>>> Critical Route

1. ADC's need 6 tick's for 16 bit transaction.
2. At 400MHz it's 2.5 ns × 6 = 15 ns.
3. As one measure has in average 50 ticks, by Nyquist:

1 sample ≈ 100 ticks or 1.5 µs = 8Kb/40 channel
4. Very simple examination expends 12 ticks for the full 40

curves, enough to let recover the PD.
5. 80 ticks for MUX and send to ETH.
6. 42Gb/s ADC data Output.
7. 2 Full Ethernet give us ≈ 5% per board.

[3. Alternative Design]$ _ [9/17]



>>> Architecture

34

3https://github.com/gregdavill/ButterStick
4https://github.com/drandyhaas/Haasoscope

[3. Alternative Design]$ _ [10/17]



>>> Architecture

1. 1 FPGA 200K LUT's or 2 85K LUT's.
2. 2 Ethernet Gb ports.
3. 4 HyperRAM x 64 MB.
4. Same Ultrasound AFE5807 ADC’s.

[3. Alternative Design]$ _ [11/17]



>>> Architecture

1. 1 FPGA 200K LUT's
2. 2 Ethernet Gb ports.
3. 1 GB RAM.
4. 260 pin count for 5 ADC's and ethernet output.

[3. Alternative Design]$ _ [12/17]



>>> Pin counting

Total pin count = 418 / 40 channels
* 5 × ADC' × 40 pin/each = 200
* 1 × ADC's General × 26/all = 26
* 4 × 64 MB hyperRAM × 24 pin /each = 96
* 2 × ETH Transceiver× 48/each = 96
* Bias Generator for DAC?

[3. Alternative Design]$ _ [13/17]



>>> FPGAs

ECP5 FPGA ≈ 70 USD × 2
* 85KLUT
* 100 - 400 MHz
* 381 pin/each

ARTY XC7A200T ≈ 200 USD × 1
* 200KLUT
* 100 - 400 MHz
* 500 pin
* same LUT/price ratio for all ARTIX family

[3. Alternative Design]$ _ [14/17]



>>> FEB Material Cost

Less than 1000 USD / Board

* ×1 FPGA 250 USD
* ×1 DDR4 RAM 10 USD
* ×5 ADC's 72 USD
* ×1 PCB 200 USD
* ×n others 100 USD

[3. Alternative Design]$ _ [15/17]



>>> Migen - Litex

[4. LiteX, Migen, Yosys...]$ _ [16/17]



>>> Migen - LiteX

HDL library based in Python.
Fast Prototype!
1. Total control of logic. (formal methods)
2. Easy migration to any FPGA
3. Test benches are self made but cores are reusable and

logic applies for any FPGA.
4. Very easy to get High Performance.
5. You can generate just what you need (very optimized use

of FPGA capability)

* 5 Years of development. Full use of hardware
capabilities.

* We can make use of formal verification.

[4. LiteX, Migen, Yosys...]$ _ [17/17]



>>> Migen - LiteX

HDL library based in Python.
Fast Prototype!
1. Total control of logic. (formal methods)
2. Easy migration to any FPGA
3. Test benches are self made but cores are reusable and

logic applies for any FPGA.
4. Very easy to get High Performance.
5. You can generate just what you need (very optimized use

of FPGA capability)

* 5 Years of development. Full use of hardware
capabilities.

* We can make use of formal verification.

[4. LiteX, Migen, Yosys...]$ _ [17/17]


	Requirements
	Mu2e FEB - Context
	Alternative Design
	LiteX, Migen, Yosys...

